Organic Semiconductors Interfaced with Biological Environments
Transducing information to and from biological environments is essential for bioresearch, neuroscience and healthcare. There has been recent focus on using organic semiconductors to interface the living world, since their structur...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PTQ2019-010773
Integración de sensores y estimuladores eléctricos en sistem...
84K€
Cerrado
PRE2021-099801
APROXIMACIONES ANALITICAS INNOVADORAS DE BIOSENSADO BASADAS...
101K€
Cerrado
TEC2016-80923-P
SISTEMA INTEGRADO PARA NEUROESTIMULACION OPTICA CON CAPTURA...
145K€
Cerrado
IONOS
An iono electronic neuromorphic interface for communication...
2M€
Cerrado
IONOSENSE-POC
Exploitation of Organic Electrochemical Transistors for Biol...
150K€
Cerrado
CTQ2011-29163-C03-02
DESARROLLO DE LOS NUEVOS TRANSDUCTORES MICROELECTRONICOS DE...
127K€
Cerrado
Información proyecto OSIRIS
Duración del proyecto: 69 meses
Fecha Inicio: 2016-10-26
Fecha Fin: 2022-07-31
Líder del proyecto
UNIVERSITAET BERN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Transducing information to and from biological environments is essential for bioresearch, neuroscience and healthcare. There has been recent focus on using organic semiconductors to interface the living world, since their structural similarity to bio-macromolecules strongly favours their biological integration. Either water-soluble conjugated polyelectrolytes are dissolved in the biological medium, or solid-state organic thin films are incorporated into bioelectronic devices. Proof-of-concept of versatile applications has been demonstrated – sensing, neural stimulation, transduction of brain activity, and photo-stimulation of cells. However, progress in the organic biosensing and bioelectronics field is limited by poor understanding of the underlying fundamental working principles. Given the complexity of the disordered, hybrid solid-liquid systems of interest, gaining mechanistic knowledge presents a considerable scientific challenge. The objective of OSIRIS is to overcome this challenge with a high-end spectroscopic approach, at present essentially missing from the field. We will address: 1) The nature of the interface at molecular and macroscopic level (assembly of polyelectrolytes with bio-molecules, interfacial properties of immersed organic thin films). 2) How the optoelectronics of organic semiconductors are affected upon exposure to aqueous environments containing electrolytes, biomolecules and cells. 3) How information is transduced across the interface (optical signals, thermal effects, charge transfer, electric fields, interplay of electronic/ionic transport). Via spectroscopy, we will target relevant optoelectronic processes with ultrafast time-resolution, structurally characterize the solid-liquid interface using non-linear sum-frequency generation, exploit Stark shifts related to interfacial fields, determine nanoscale charge mobility using terahertz spectroscopy in attenuated total reflection geometry, and simultaneously measure ionic transport.