Order and Disorder at the Surface of Biological Membranes.
Heterogeneous biomolecular mechanisms at the surface of cellular membranes are often fundamental to generate function and dysfunction in living systems. These processes are governed by transient and dynamical macromolecular intera...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BIO2008-00205
INTEGRACION, ANALISIS Y MODELADO DE REDES DE RUTAS BIOLOGICA...
269K€
Cerrado
BFU2015-63206-CIN
TALLER FEBS SOBRE BIOINTERACTOMICA: DE LAS INTERACCIONES BIM...
10K€
Cerrado
BIOPHIS
Biophysical mechanisms regulating early T cell signalling ev...
100K€
Cerrado
CTQ2014-52633-P
RECONOCIMIENTO EN SISTEMAS COMPLEJOS DE BIOMOLECULAS MEDIANT...
218K€
Cerrado
EQC2018-004301-P
Análisis de Interacciones moleculares sin marcaje
99K€
Cerrado
MIMIC
Mapping and modulating integrin mediated interactions
163K€
Cerrado
Información proyecto BioDisOrder
Duración del proyecto: 68 meses
Fecha Inicio: 2019-03-19
Fecha Fin: 2024-11-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Heterogeneous biomolecular mechanisms at the surface of cellular membranes are often fundamental to generate function and dysfunction in living systems. These processes are governed by transient and dynamical macromolecular interactions that pose tremendous challenges to current analytical tools, as the majority of these methods perform best in the study of well-defined and poorly dynamical systems. This proposal aims at a radical innovation in the characterisation of complex processes that are dominated by structural order and disorder, including those occurring at the surface of biological membranes such as cellular signalling, the assembly of molecular machinery, or the regulation vesicular trafficking.
I outline a programme to realise a vision where the combination of experiments and theory can delineate a new analytical platform to study complex biochemical mechanisms at a multiscale level, and to elucidate their role in physiological and pathological contexts. To achieve this ambitious goal, my research team will develop tools based on the combination of nuclear magnetic resonance (NMR) spectroscopy and molecular simulations, which will enable probing the structure, dynamics, thermodynamics and kinetics of complex protein-protein and protein-membrane interactions occurring at the surface of cellular membranes. The ability to advance both the experimental and theoretical sides, and their combination, is fundamental to define the next generation of methods to achieve our transformative aims. We will provide evidence of the innovative nature of the proposed multiscale approach by addressing some of the great questions in neuroscience and elucidate the details of how functional and aberrant biological complexity is achieved via the fine tuning between structural order and disorder at the neuronal synapse.