Optoelectronic and all-optical hyperspin machines for large-scale computing
Efficient hardware for combinatorial optimization and machine learning impacts science, engineering, and society. With new computational models, photonics tackle problems intractable with conventional computing systems. However, e...
Efficient hardware for combinatorial optimization and machine learning impacts science, engineering, and society. With new computational models, photonics tackle problems intractable with conventional computing systems. However, existing devices only scale up to thousands of spins and operate at the second timescale. I demonstrate photonic machines for ultrafast parallel processing of millions of spins with microsecond timescale. The strategy is minimizing a class of functions, the Ising Hamiltonian, by a new computational system that uses a high-dimensional feature space and speeds up optimization by orders of magnitude by ultrafast nonlinear optical processes. I build digital, optoelectronics, and all-optical classical and quantum devices and benchmark with real-world, large-scale problems.By spatial modulation technology and a cheap, simple, and scalable design, light propagation is recurrently trained towards the ground state of a programmable Ising Hamiltonian. Starting from my proof-of-concept, first, I aim at the energetically efficient computing of large-scale Hamiltonians. Second, I include self-optimizing all-optical nonlinear ultrafast phase-locking processes. Third, I demonstrate record combinatorial optimization by letting the spins evolve in a high dimensional space to guarantee high success probability.HYPERSPIM leverages the interplay of classical and quantum dynamics through the onset of entanglement and squeezing. The unprecedented scale and versatility allow the first quantum optimization tests for real-world complex computational tasks.HYPERSPIM achieves the fastest and biggest optical computing device operating in classical and quantum regimes in an interdisciplinary route towards new photonic artificial intelligence, large-scale all-optical computing, and fundamental science.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.