Optimized Nanofluids for Efficient Solar Thermal Energy Production
As part of its Green Deal, the EU aims to decarbonize energy production by 55% compared to 1990 levels and must turn to renewable energy sources. While the northern European countries have some access to these sources, they do not...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-096393-B-I00
NANOFLUIDOS AVANZADOS BASADOS EN NANOESTRUCTURAS 1D Y 2D PAR...
80K€
Cerrado
ENE2012-37804-C02-02
APLICACION DE ESTRUCTURAS CUANTICAS Y OTROS NUEVOS CONCEPTOS...
234K€
Cerrado
ENE2016-79282-C5-2-R
NANOMATERIALES PARA CELDAS SOLARES TIPO PEROVSKITA DE ALTA E...
73K€
Cerrado
RYC-2015-18539
Nuevos conceptos y materiales para el desarrollo de células...
309K€
Cerrado
FJC2020-043416-I
Molten salt-based nanofluid as efficient thermal energy stor...
53K€
Cerrado
BES-2011-045774
DESARROLLO DE CELULAS SOLARES EFICIENTES BASADAS EN KESTERIT...
43K€
Cerrado
Información proyecto ONESTEP
Duración del proyecto: 31 meses
Fecha Inicio: 2023-03-13
Fecha Fin: 2025-10-31
Líder del proyecto
HOGSKULEN PA VESTLANDET
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
264K€
Descripción del proyecto
As part of its Green Deal, the EU aims to decarbonize energy production by 55% compared to 1990 levels and must turn to renewable energy sources. While the northern European countries have some access to these sources, they do not have consistent amounts of sunlight for photothermal energy (PE) generation. Novel approaches are under development to allow these regions to benefit from solar resources. Solar radiation-induced boiling in nanofluids can be used for PE steam generation as it facilitates more efficient solar collector technology. However, knowledge of the mechanisms behind this boiling is severely lacking because the methods to measure these systems are inaccurate at scale and cannot be used for practical, opaque nanofluids, limiting the focus to macroscopic properties. Understanding these mechanisms is the key to advancing PE technologies. Therefore, this project endeavours to develop and use new methods to qualify and quantify the photothermal boiling process in nanofluids at the microscale. I will move from Canada to Europe to complete this ambitious project with three specific aims. First, I will characterize two novel candidate nanofluids: plasma-functionalized graphene and carbon nanofibers (mass-produced by the project exploitation partner). Second, I will develop new, distinct measurement techniques that separate this study from existing ones which only measure temperature and steam flow rate. One method will use bubble bursting acoustics to quantity the number and size of bubbles. The other will use a medical X-ray technique, computed tomography, to image photothermal boiling for the first time. Finally, I will perform boiling tests to determine potential mechanisms and extend the existing models. With these objectives fulfilled, new information and methodologies will be developed for future research, I will gain new skills and competencies to prepare me for a future in industrial research, and Europe will be ONESTEP closer to a greener future.