Optimize risk prediction after myocardial infarction through artificial intellig...
Optimize risk prediction after myocardial infarction through artificial intelligence and multidimensional evaluation
Myocardial infarction (MI) is a leading cause of death worldwide. After MI, long-term antithrombotic therapy is crucial to prevent recurrent events, but increases bleeding, that also impacts morbidity and mortality. Giving these c...
Myocardial infarction (MI) is a leading cause of death worldwide. After MI, long-term antithrombotic therapy is crucial to prevent recurrent events, but increases bleeding, that also impacts morbidity and mortality. Giving these competing risks prediction tools to forecast ischemic and bleeding are of paramount importance to inform clinical decisions, but their current precision is limited. Improve events prediction, by discovering novel and innovative markers of risk would have a tremendous impact on therapeutic decisions and patients’ outcome. I hypothesize that using innovative multidimensional information from wearable devices, biomarkers, behavioral patterns and non-invasive imaging, integrated through artificial intelligence computation, we may discover novel computational biomarkers of risk and improve current standards of risk prediction. In this project, I will enroll a large cohort of MI patients, whereby prospective collection of consolidated and innovative potential risk predictors will take place, in order to generate a comprehensive and multidimensional dataset. I will collect data from state-of-the-art non-invasive imaging, blood biomarkers, wearable medical devices of continuous heart electrical activity, sweat, mobility and behavioral patterns to create a large physiological time series allowing patients’ deep phenotyping. We will therefore analyze data leveraging artificial intelligence computation to find relevant associations with clinical outcomes, and compare new algorithms with current risk prediction tools. This research will increase our knowledge on bleeding and ischemic risk factors, enabling enhanced capability predictions models. In the near future, we hypothesize that our clinically-guided Artificial Intelligence algorithm might be integrated in clinical practice, helping clinicians to inform treatment decisions, patients to better understand their risk profile, finally setting a common ground for shared patient/physician decisions.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.