Optimization of fast-ion confinement against edge instabilities for future fusio...
Optimization of fast-ion confinement against edge instabilities for future fusion reactors
The project presented here deals with Fast-Ion Confinement OPtimization (FICOP) in magnetically confined fusion reactors. The goal of the project presented here is the characterization of the effect of edge instabilities on fast-i...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ENE2012-30832
TEORIA CINETICA DE TRANSPORTE Y SIMULACION DE PLASMAS DE FUS...
44K€
Cerrado
PID2021-123175NB-I00
SIMULACIONES DE TRANSPORTE EN PLASMAS CONFINADOS EN STELLARA...
54K€
Cerrado
ENE2010-19401
INESTABILIDADES HIDRODINAMICAS EN FUSION TERMONUCLEAR POR CO...
15K€
Cerrado
PID2019-110734RB-I00
DESARROLLO DE CODIGOS Y MODELOS PARA EL ESTUDIO DE PROBLEMAS...
91K€
Cerrado
AFILM
Advanced Fast-Ion Loss Measurements at the JT-60SA and ITER...
181K€
Cerrado
PID2021-125607NB-I00
ESTUDIO EXPERIMENTAL DE FLUJOS, TURBULENCIA Y MODOS MHD, Y S...
194K€
Cerrado
Información proyecto FICOP
Duración del proyecto: 26 meses
Fecha Inicio: 2022-06-28
Fecha Fin: 2024-08-31
Líder del proyecto
UNIVERSIDAD DE SEVILLA
No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores3670
Presupuesto del proyecto
165K€
Descripción del proyecto
The project presented here deals with Fast-Ion Confinement OPtimization (FICOP) in magnetically confined fusion reactors. The goal of the project presented here is the characterization of the effect of edge instabilities on fast-ion confinement and the understanding of the physical mechanisms behind this interaction, as well as to experimentally explore the conditions upon which ion runaway can take place in tokamaks by studying the behaviour of fast-ions in the current ramp-up and ramp-down phases, disruptions, and sawtooth crashes. To fulfill these objectives, novel and cutting-edge data analysis techniques will be developed to be applied to fusion diagnostics, including integrated tomography techniques and deep learning.
The results of this project are expected to have a direct impact on the fusion community. The problem of power exhaust in tokamaks mainly focuses on the power dissipation through the divertor plates. Therefore, the limits to tokamak operation are set based on the heat fluxes that the materials in the divertor plates can tolerate. However, an additional constraint might come from the fast-ion heat loads due to edge instabilities that may deposit power not only on the divertor plates but also in the first wall of the main chamber, often in localized areas. The results of this project may help to assess weather fast-ion heat loads to the main chamber first wall due to edge instabilities can pose an additional constraint to the operational regime of a tokamak fusion reactor, or eventually impact its design by the addition of reinforced structures. The experimental results of the project will also be used to benchmark the state-of-the-art codes that the fusion community uses to make projections towards future machines. If successful, the benchmark will strengthen our confidence in our predicting capabilities, while if unsuccessful, the results will motiv