Optical nanoscopy at 1 nm resolution far field fluorescence control at cryogeni...
Optical nanoscopy at 1 nm resolution far field fluorescence control at cryogenic temperatures
Optical nanoscopy is a powerful technique used in biology to study subcellular structures and function via specifically targeted fluorescent labels. Localization microscopy in particular offers a much better resolution (~10-50 nm)...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2012-34487
MICROSCOPIA DE SUPER-RESOLUCION DE ADN: OPTIMIZACION A TRAVE...
82K€
Cerrado
IntraMol
Intramolecular optical microscopy with sub-nm spatial resolu...
174K€
Cerrado
BFU2011-29038-C02-01
ANALISIS ESTRUCTURAL INTEGRADO A DISTINTOS NIVELES DE RESOLU...
455K€
Cerrado
PDC2022-133351-I00
MICROSCOPIA DE SUPERRESOLUCION PARALELA POR 'AGOTAMIENTO'
99K€
Cerrado
UNPO13-1E-2320
ADQUSICIÓN DE UN EQUIPO DE MICROSCOPÍA DE SUPER-RESOLUCIÓN
599K€
Cerrado
PGC2018-094802-B-I00
MICROSCOPIA DE SUPER-RESOLUCION CON FLUOROFOROS NO CONVENCIO...
85K€
Cerrado
Información proyecto OptnanoATcryo
Duración del proyecto: 62 meses
Fecha Inicio: 2015-04-07
Fecha Fin: 2020-06-30
Descripción del proyecto
Optical nanoscopy is a powerful technique used in biology to study subcellular structures and function via specifically targeted fluorescent labels. Localization microscopy in particular offers a much better resolution (~10-50 nm) than conventional microscopy (~250 nm) while being relatively undemanding on the experimental setup and the subsequent image analysis. The next revolution in imaging to 1 nm isotropic resolution in 3D must realize a big increase in the number of collected photons from single fluorescent emitters as well as in the labelling density. Only then can subcellular structures be imaged at the molecular level to study the molecular machinery of the cell. Notably observations of DNA conformation in 3D at such resolutions would be spectacular and enable investigation of biophysical models ranging from chromosomal DNA packaging to gene regulation.
I propose a new imaging technique based on fluorescence control at cryogenic temperatures in combination with novel data driven super-resolution reconstruction schemes employing prior knowledge that promises this unprecedented optical far-field resolution. I introduce a twofold technical leap by i) much higher photon counts due to negligible photobleaching at cryogenic temperatures while maintaining the sparsity required for single emitter localization and ii) relaxing the required labelling density using a priori information and the averaging of many identical entities. Orientational blinking ensures single emitter localization via a combination of polarization sensitive excitation, detection and stimulated depletion and triplet state shelving.
Biophysical models of cell structures and data driven priors mean that fewer samples are needed to fully describe a structure.
In a larger perspective, the outcome of this research will enable the combination of structural cryo-electron microscopy imaging at subnanometer resolutions with functional fluorescent imaging at the nanometer scale.