Optical Interrogation of Hippocampal Dentate Granule Circuit Dynamics in Health...
Optical Interrogation of Hippocampal Dentate Granule Circuit Dynamics in Health and Disease
Understanding the cellular and synaptic basis of memory remains a central goal of modern neuroscience. Physical traces of memory exist as an enduring, experience-dependent change in neural activity in response to learning. In the...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto Circdyn
Duración del proyecto: 27 meses
Fecha Inicio: 2016-09-06
Fecha Fin: 2018-12-31
Líder del proyecto
UNIVERSITAT ZURICH
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
175K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Understanding the cellular and synaptic basis of memory remains a central goal of modern neuroscience. Physical traces of memory exist as an enduring, experience-dependent change in neural activity in response to learning. In the hippocampus, a key region of the mammalian brain involved in memory formation and recall, new neurons are continually generated in the dentate gyrus (DG) where they form an integral part of the existing functional circuitry. Despite its key position in the hippocampal formation, however, the function of DG and its adult-born neurons in vivo has not been carefully investigated. Here, by applying transgenic and optogenetic approaches – including multicolour genetically encoded activity reporters – together with longitudinal two-photon imaging, we aim to study functional dynamics and plastic changes in DG in health and disorder. We propose that activity patterns in DG cell populations show activity-dependent changes during learning and construct a cellular and circuit basis for contextual memory engrams. We will also investigate how synaptic alterations in excitation-inhibition balance and defects in adult neurogenesis in DG lead to neurological disorders such as Rett syndrome.