Operator Based Representations for Geometry Processing
Geometric data is prevalent in many areas of science and technology. From the surface of the brain to the intricate shapes of free-form architecture, complex geometric structures arise in many fields, and problems such as analysis...
Geometric data is prevalent in many areas of science and technology. From the surface of the brain to the intricate shapes of free-form architecture, complex geometric structures arise in many fields, and problems such as analysis, processing and synthesis of geometric data are of great importance.
One major challenge in tackling such problems is choosing an adequate discrete representation of the geometric data. Traditionally, surface geometric data is treated as an irregularly sampled signal in three-dimensional space, yielding a representation as either a point cloud, or a polygonal mesh. Further analysis and manipulation are done directly on this discrete representation, resulting in algorithms which are often combinatorial, leading to difficult numerical optimization problems. The goal of this research is to explore a fundamentally different approach of representing geometric data through the space of scalar functions defined on it, and representing geometric operations as algebraic manipulations of linear operators acting on such functions. We will investigate the basic theory behind such a representation, addressing questions such as: what are the best function spaces to work with? Which operators can be consistently discretized, leading to discrete theorems analogous to continuous ones? How should multi-scale processing of geometric data be treated in this novel representation? To validate our approach, we will explore how this representation can be leveraged for devising efficient solutions to difficult real-world geometry processing problems, such as numerical simulation of intricate phenomena on curved surfaces, surface correspondence and quadrangular remeshing. By shifting the focus from geometry-centric representations and considering instead shapes through the lens of functional operators, we could potentially lay the ground for a fundamental change in the way that geometric data is treated and understood.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.