Open Superior Efficient Solar Atmosphere Model Extension
The goal is to develop a time evolving model for the entire solar atmosphere, including the chromosphere and transition region, based on a multi-fluid description. At present, models are steady, rely on a single-fluid description...
The goal is to develop a time evolving model for the entire solar atmosphere, including the chromosphere and transition region, based on a multi-fluid description. At present, models are steady, rely on a single-fluid description and include only the corona due to computational challenges. We plan to use time-evolving ion-neutral and ion-neutral-electron models. The multi-fluid approach will enable us to describe the intricate physics in the partially ionized chromosphere and quantize the transfer of momentum and energy between the atmospheric layers. The questions where the solar wind originates and solar flares and coronal mass ejections are driven have both fundamental scientific importance and substantial socio-economic impact. Indeed, the solar atmospheric model is the crucial missing link in the Sun-to-Earth model chain to predict the arrival and impact of CMEs at Earth.
What makes this goal now possible is the combination of our implicit solver with a high-order flux-reconstruction (FR) method. The implicit solver avoids the numerical instabilities that lead to strict time step limitations on explicit schemes. The high-order FR method enables high-fidelity simulations on very coarse grids even in zones of high gradients. We will start from this new development and introduce three critical innovations. First, we will combine high-order FR with physics-based r-adaptive (moving) unstructured grids redistributing grid points to regions with high gradients. Second, we will implement CPU-GPU algorithms for the new heterogeneous supercomputers advanced by HPC-Europa. Third, we will implement AI generated magnetograms to make the model respond to the time-varying photospheric magnetic field which is crucial for understanding important properties.
We will thus develop a first-in-its-kind high-order GPU-enabled 3D time-accurate solver for multi-fluid plasmas. If successful, we will have the most advanced solar atmosphere model implemented in an operational environment.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.