Oncolipidomics: Why is lipidomic dysregulation pattern in blood similar for vari...
Oncolipidomics: Why is lipidomic dysregulation pattern in blood similar for various cancers?
Lipids are involved in numerous pathways of human metabolism that are related to pathological states. Alterations of lipid concentrations in the blood of cancer patients have been reported but the biological origin is still unknow...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2011-26603
UTILIZACION COMBINADA DE TECNICAS ANALITICAS Y QUIMIOMETRICA...
92K€
Cerrado
RTI2018-096323-B-I00
ESTUDIO DE PROTEINAS MODIFICADAS LIPIDICAMENTE: SONIC HEDGEH...
57K€
Cerrado
PDC2022-133402-I00
DESCIFRANDO EL LIPIDOMA HUMANO: CRYPT LIPID CODES PARA PREDE...
141K€
Cerrado
AURORA
An integral solution for quantifying intracellular lipid tra...
150K€
Cerrado
EQC2018-005153-P
Adquisición de un espectrómetro de análisis de masas de Alta...
453K€
Cerrado
Información proyecto ONCOLIPID
Duración del proyecto: 60 meses
Fecha Inicio: 2023-07-27
Fecha Fin: 2028-07-31
Líder del proyecto
UNIVERZITA PARDUBICE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Lipids are involved in numerous pathways of human metabolism that are related to pathological states. Alterations of lipid concentrations in the blood of cancer patients have been reported but the biological origin is still unknown. Deciphering the mechanisms of the lipid dysregulation mechanism could dramatically change oncology because it can open new avenues for cancer detection with subsequent effective treatment and drug development targeting dysregulated pathways. Early cancer diagnosis is one of the main unmet needs in medicine, which can improve the unfavorable prognosis of patients. The potential of lipidomics has not been fully explored yet, because analytical workflows have limitations in terms of accurate molar quantitation and insufficient coverage of the lipidome. Biologists predict up to 100,000 lipid species in nature, but current methods typically report less than 1% of this number. Here, we will develop novel approaches for quantitation of more than 2,000 lipids from >80 classes using 13C stable isotope labeled internal standards and ultrahigh-resolution methods in liquid or supercritical fluid chromatography, mass spectrometry, and ion mobility. The comprehensive characterization of lipidome will allow us to construct Cancer Lipidome Atlas (WP1). We will develop new Bayesian software for automated data processing and statistical evaluation applicable to the main lipidomic and metabolomic workflows (WP2). We will correlate lipidomics data with metabolomics, proteomics, and transcriptomics data to unravel why lipidomic dysregulation in blood has a similar pattern for various cancers (WP3). This strategy will be applied for the comparison of ten types of cancer with control samples in cell lines, animal models (mice and pigs), human samples (tissues and plasma), and extracellular vesicles. Our initial hypothesis is that the lower activity of CERS2 triggered by cancer cells can downregulate very long fatty acyl ceramides and other sphingolipids.