Oncolipidomics: Why is lipidomic dysregulation pattern in blood similar for vari...
Oncolipidomics: Why is lipidomic dysregulation pattern in blood similar for various cancers?
Lipids are involved in numerous pathways of human metabolism that are related to pathological states. Alterations of lipid concentrations in the blood of cancer patients have been reported but the biological origin is still unknow...
Lipids are involved in numerous pathways of human metabolism that are related to pathological states. Alterations of lipid concentrations in the blood of cancer patients have been reported but the biological origin is still unknown. Deciphering the mechanisms of the lipid dysregulation mechanism could dramatically change oncology because it can open new avenues for cancer detection with subsequent effective treatment and drug development targeting dysregulated pathways. Early cancer diagnosis is one of the main unmet needs in medicine, which can improve the unfavorable prognosis of patients. The potential of lipidomics has not been fully explored yet, because analytical workflows have limitations in terms of accurate molar quantitation and insufficient coverage of the lipidome. Biologists predict up to 100,000 lipid species in nature, but current methods typically report less than 1% of this number. Here, we will develop novel approaches for quantitation of more than 2,000 lipids from >80 classes using 13C stable isotope labeled internal standards and ultrahigh-resolution methods in liquid or supercritical fluid chromatography, mass spectrometry, and ion mobility. The comprehensive characterization of lipidome will allow us to construct Cancer Lipidome Atlas (WP1). We will develop new Bayesian software for automated data processing and statistical evaluation applicable to the main lipidomic and metabolomic workflows (WP2). We will correlate lipidomics data with metabolomics, proteomics, and transcriptomics data to unravel why lipidomic dysregulation in blood has a similar pattern for various cancers (WP3). This strategy will be applied for the comparison of ten types of cancer with control samples in cell lines, animal models (mice and pigs), human samples (tissues and plasma), and extracellular vesicles. Our initial hypothesis is that the lower activity of CERS2 triggered by cancer cells can downregulate very long fatty acyl ceramides and other sphingolipids.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.