Nanobioreactor, a fascinating technology, is a latest combination of nanobiotechnology with advanced functional materials, are becoming promising tools for sensitive and selective novel biosensors. The aim of this research is to d...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2015-63704-P
DE LAS NANO-PARTICULAS BLANDAS UNIMOLECULARES A LOS NANO-COM...
213K€
Cerrado
PID2021-126304OB-C43
SINTESIS Y APLICACIONES SELECCIONADAS DE NUEVOS NANOMATERIAL...
163K€
Cerrado
DyeMetalloCage
Dye Based Metallo Supramolecular Cages for Molecular Recogni...
173K€
Cerrado
MAT2008-06503
SINTESIS Y PROPIEDADES DE CLUSTERES, NANOPARTICULAS Y NANOCO...
258K€
Cerrado
PID2019-106165GB-C22
HACIA NUEVOS NANOMATERIALES PARA TECNOLOGIAS EMERGENTES
61K€
Cerrado
MAT2009-07747
FENOMENOS DE TRANSPORTE EN NANOPOROS SINTETICOS CON NUEVAS P...
52K€
Cerrado
Información proyecto SSNano
Líder del proyecto
CRANFIELD UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
210K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Nanobioreactor, a fascinating technology, is a latest combination of nanobiotechnology with advanced functional materials, are becoming promising tools for sensitive and selective novel biosensors. The aim of this research is to develop, synthesize and apply a new generation of stimuli-responsive switch-like nanobioreactors which own the self-switching textural ability to allow the specific recognition of target bioanalytes. The implementation of the project could generate important contributions to the development of stimuli-responsive advanced nano-materials for the various applications, such biocatalysts and nanobiosensors. To achieve the goals, a fundamental route to development of stimuli-responsive advanced materials is showed below: first, cationic polystyrene (PS) particles formed via emulsifier-free polymerization will be used as templates to prepare core-shell hybrid PS/SiO2 via the ammonia-catalyzed hydrolysis and condensation of (3-Mercaptopropyl) trimethoxysilane, Tetraethylorthosilicate and methacryloxypropyltrimethoxysilane. In the second step, cationic PS templates will be removed in toluene solution to form hollow silica particles. Subsequently, Au3+ will be assembled into inner pore of hollow silica through Au-S interaction and then reduced into nanoclusters by sodium borohydride. Finally, N-isopropylacylamide and 2-acrylamide-2-methylpropane sulfonic acid will be alternately grafted onto the surface of hollow silica particles, in the presence of N,N’-methylenebisacrylamide, to form an interpenetrating polymer network. The resulting nanoreactors would be expected to demonstrate on/off switchable behavior upon the contact with external stimuli such as temperature.