The MSCA Individual fellowship project OPHOCS – On-chip Photonic Cluster State Generation focuses on the realization and investigation of large cluster states of entangled single photons with applications in quantum information pr...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SPANGL4Q
Spin Photon Angular Momentum Transfer for Quantum Enabled Te...
3M€
Cerrado
MultiQubit
Multi Qubit Photonic Devices
3M€
Cerrado
QD-NOMS
Elementary quantum dot networks enabled by on chip nano opto...
2M€
Cerrado
RYC-2011-09528
Semiconductor nanostructures as components for quantum infor...
184K€
Cerrado
TED2021-130552B-C22
ACELERANDO LA TRANSICION DIGITAL CON NANOFOTONICA CUANTICA:...
114K€
Cerrado
Información proyecto OPHOCS
Duración del proyecto: 24 meses
Fecha Inicio: 2017-02-10
Fecha Fin: 2019-02-28
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
200K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The MSCA Individual fellowship project OPHOCS – On-chip Photonic Cluster State Generation focuses on the realization and investigation of large cluster states of entangled single photons with applications in quantum information processing. The project will progress recent developments of quantum dot spin qubits as the entanglement resource, which may be scaled up to a large cluster state by employing state-of-the-art nanophotonic devices to efficiently boost the photon generation efficiency.
A highly entangled many-photon cluster state is an eagerly sought after fundamental resource enabling measurement-based quantum-information processing. Here computation algorithms are carried out only by single-qubit measurements combined with classical feed-forward operations on the large-scale cluster state. This feature makes such a one-way quantum computer highly desirable as it critically reduces the requirements for quantum computation. Recent, first proof-of-principle implementations elucidate its potential but are limited in their scalability.
The proposed research will facilitate self-assembled semiconductor quantum dots as a scalable photonic resource by exploiting their unique ability for the generation of highest purity indistinguishable photons with unprecedented high efficiencies. This resource will be directly integrated into nanophotonic waveguide devices, and the inherently strong light-matter interaction exploited to demonstrate efficient spin-photon interfaces for high rate, high fidelity cluster state generation. With this architecture we will establish a solid-state device for quantum information science, with the immediate target of generating, for the first time, on-chip photonic cluster states with n>10.