Offshore Freshened Groundwater Prospecting using Machine Learning
Offshore freshened groundwater (OFG) refers to fluids stored in sediment pores and rock fractures below the seafloor, with a salinity lower than seawater. This phenomenon has been identified globally in continental margins and pro...
Offshore freshened groundwater (OFG) refers to fluids stored in sediment pores and rock fractures below the seafloor, with a salinity lower than seawater. This phenomenon has been identified globally in continental margins and proposed as a resource that can potentially alleviate water stress in coastal regions. However, the scarcity of data to constrain the distribution and volumes of the reservoirs remains a challenge. OPTIMAL project aims to: (i) develop an interdisciplinary methodology to predict the occurrence and distribution of OFG resources built on Artificial Intelligence and (ii) apply the model globally to infer OFG occurrence and quantify the resource feasibility as a function of distribution characteristics such as offshore extent, depth below the seafloor and fresh to brackish water ratio. The proposed methodology uses a surrogate model to create a dataset of input parameters, representing key geological and geomorphological components influencing OFG systems, such as aquitard thickness and seafloor bathymetry. The output data will be generated via numerical simulation of variable-density groundwater transport on the suite of surrogate models using high-performance computing. These data will be used to train and test machine learning algorithms. The successful models will be validated using real-world data from the existing global OFG database. The predictive model proposed in this fellowship contributes to achieving Sustainable Development Goals related to technologies for improving access to water resources. The primary beneficiary of this funding will be the University of Malta. Partner organizations will be Utrecht University and Deltares in The Netherlands. The action presents a unique opportunity for the fellow to transfer his expertise in stochastic reservoir modelling and characterization of OFG systems to the host, while learning about marine geology, seafloor landforms and applied machine learning.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.