Numerical modeling of cardiac electrophysiology at the cellular scale
Cardiovascular diseases are the most frequent cause of death worldwide and half of these deaths are due to cardiac arrhythmia, a disorder of the heart's electrical synchronization system. Numerical models of this complex system ar...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
iHEART
An Integrated Heart Model for the simulation of the cardiac...
2M€
Cerrado
PID2019-104356RB-C44
MODELO VIRTUAL COMPUTACIONAL MECANO-ELECTRICO DE CORAZON HUM...
137K€
Cerrado
PID2019-107329RB-C21
MODELO MULTIESCALA DE LA ACTIVIDAD ELECTRICA DEL CORAZON DE...
67K€
Cerrado
TIN2012-37546-C03-03
CORAZON HUMANO FISIOLOGICO VIRTUAL: DESARROLLO DE HERRAMIENT...
23K€
Cerrado
DPI2009-06999
DESARROLLO DE TECNICAS DE ANALISIS DE SISTEMAS COMPLEJOS PAR...
54K€
Cerrado
Información proyecto MICROCARD
Duración del proyecto: 45 meses
Fecha Inicio: 2020-12-18
Fecha Fin: 2024-09-30
Líder del proyecto
UNIVERSITE DE BORDEAUX
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
6M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Cardiovascular diseases are the most frequent cause of death worldwide and half of these deaths are due to cardiac arrhythmia, a disorder of the heart's electrical synchronization system. Numerical models of this complex system are highly sophisticated and widely used, but to match observations in aging and diseased hearts they need to move from a continuum approach to a representation of individual cells and their interconnections. This implies a different, harder numerical problem and a 10,000-fold increase in problem size. Exascale computers will be needed to run such models.
We propose to develop an exascale application platform for cardiac electrophysiology simulations that is usable for cell-by-cell simulations. The platform will be co-designed by HPC experts, numerical scientists, biomedical engineers, and biomedical scientists, from academia and industry. We will develop, in concert, numerical schemes suitable for exascale parallelism, problem-tailored linear-system solvers and preconditioners, and a compiler to translate high-level model descriptions into optimized, energy-efficient system code for heterogeneous computing systems. The code will be parallelized with a recently developed runtime system that is resilient to hardware failures and will use an energy-aware task placement strategy.
The platform will be applied in real-life use cases with high impact in the biomedical domain and will showcase HPC in this area where it is painfully underused. It will be made accessible for a wide range of users both as code and through a web interface.
We will further employ our HPC and biomedical expertise to accelerate the development of parallel segmentation and (re)meshing software, necessary to create the extremely large and complex meshes needed from available large volumes of microscopy data.
The platform will be adaptable to similar biological systems such as nerves, and components of the platform will be reusable in a wide range of applications.