We propose to develop scalable solvers for integral equation based nonlocal (NL) problems such as peridynamics (PD). Heterogeneity will also be studied due to utmost importance of composite materials to numerous applications in m...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2008-02232
COMPORTAMIENTO NO-LINEAL DE MATERIALES COMPUESTOS MULTILAMIN...
64K€
Cerrado
BIA2011-24258
MODELADO MULTIESCALA DEL COMPORTAMIENTO MECANICO Y DE FALLO...
145K€
Cerrado
INC-TU-2011-1322
MÉTODOS ANALÍTICOS Y NUMÉRICOS PARA LA DETERMINACIÓN DE LOS...
123K€
Cerrado
INC-TU-2011-1317
MÉTODOS ANALÍTICOS Y NUMÉRICOS PARA LA DETERMINACIÓN DE LOS...
112K€
Cerrado
DPI2010-19145
MODELOS DE CAMPO DE FASE PARA PROBLEMAS DE DISCONTINUIDAD LI...
24K€
Cerrado
Multimech
Solving the multi-scale problem in materials mechanics: a pa...
953K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We propose to develop scalable solvers for integral equation based nonlocal (NL) problems such as peridynamics (PD). Heterogeneity will also be studied due to utmost importance of composite materials to numerous applications in material science and structural mechanics. Robustness of the solvers with respect to heterogeneity and multiscale finite element discretizations are the subsequent directions to pursue.
Since the impact of nonlocality on solvers has never been studied before, this research initiative is unique, transformative, and has great potential to create a solver subfield: nonlocal domain decomposition methods (DDM). We propose to study both the algorithmic and theoretical aspects of DDM. The solver research has the potential to reveal multiscale implications associated to NL modeling. We recently proved fundamental conditioning results indicating that the weak formulation of PD can be bounded independently of the mesh size, meaning that one can increase the resolution without increasing the condition number.
Scalable and robust solver technologies will create a great impact on simulation capabilities of nonlocal problems at large. In particular, PD will be used for more complex and realistic NL applications because scalable solvers will directly impact the modeling and simulation capability. There is also imminent need for robust preconditioning in the computational material science community as composite materials become industry standard. For instance, Airbus heavily uses light weight composite materials in modern aircrafts.