Explaining low-energy nuclear structure from Quantum Chromodynamics, the
underlying theory of the strong interaction, is one of the major
challenges in contemporary theoretical nuclear and particle physics.
What is needed is, on t...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2021-127890NB-I00
NUEVOS DESARROLLOS EN METODOS DE MUCHOS CUERPOS NUCLEARES
117K€
Cerrado
FIS2008-01143
DINAMICA DE SISTEMAS HADRONICOS EN FISICA NUCLEAR A ENERGIAS...
97K€
Cerrado
FPA2009-13377-C02-01
ESTUDIOS TEORICOS DE ESTRUCTURA NUCLEAR EN NUCLEOS EXOTICOS
86K€
Cerrado
PID2019-105439GB-C22
FISICA HADRONICA, INTERACCIONES FUNDAMENTALES Y FISICA NUCLE...
70K€
Cerrado
FIS2011-24149
DINAMICA DE SISTEMAS HADRONICOS EN FISICA NUCLEAR A ENERGIAS...
109K€
Cerrado
EXOTIC
Emergent Complexity from strong Interactions
2M€
Cerrado
Información proyecto NUCLEAREFT
Líder del proyecto
RUHRUNIVERSITAET BOCHUM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Explaining low-energy nuclear structure from Quantum Chromodynamics, the
underlying theory of the strong interaction, is one of the major
challenges in contemporary theoretical nuclear and particle physics.
What is needed is, on the one hand, a detailed quantitative understanding of the
interaction between baryons, the relevant effective degrees
of freedom for the problem at hand, based on Quantum Chromodynamics. On the
other hand, a microscopic description of strongly interacting baryons requires
reliable methods to deal with the quantum mechanical few- and many-body problems.
The proposed research addresses both of the two challenges aiming to
achieve a precise, quantitative description of nuclear forces and the
properties of light nuclei and hyper-nuclei firmly rooted in the symmetries of
Quantum Chromodynamics. These goals will be reached by using analytical
methods based on chiral effective field theory combined with large-scale
numerical simulations on high-performance computers.