Novel insights into the sensing of salt stress in plants understanding the rela...
Novel insights into the sensing of salt stress in plants understanding the relationship between salt stress response and cytosolic pH changes.
The Salt Overly Sensitive (SOS) pathway is one of the main regulatory systems responsible for Na homeostasis in plants. The SOS pathway is activated by salt stress and comprises three core components: SOS1, SOS2 and SOS3. SOS3 is...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CGL2008-00438
RESPUESTAS DE LAS PLANTAS AL ESTRES ABIOTICO: CORRELACION CO...
103K€
Cerrado
JDC2023-052331-I
Ion homeostasis and biochemical pathways for improving plant...
72K€
Cerrado
AGL2013-42778-P
IMPLICACION DE POLIAMINAS Y BRASINOESTEROIDES EN LA RESPUEST...
123K€
Cerrado
PID2019-109664RB-I00
NUEVAS CAPAS DE REGULACION DE LA RUTA SOS PARA LA TOLERANCIA...
109K€
Cerrado
SignStressPath
Networking by stress signalling pathways identification of...
176K€
Cerrado
BIO2015-70946-R
FUNCION Y REGULACION DE LOS ANTIPORTADORES NA+/H+ DE ARABIDO...
Cerrado
Información proyecto sigNal
Duración del proyecto: 29 meses
Fecha Inicio: 2018-03-13
Fecha Fin: 2020-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The Salt Overly Sensitive (SOS) pathway is one of the main regulatory systems responsible for Na homeostasis in plants. The SOS pathway is activated by salt stress and comprises three core components: SOS1, SOS2 and SOS3. SOS3 is a calcium (Ca) sensor that perceives the increase of intracellular Ca triggered by salt stress and recruits SOS2, a Ser/Thr protein kinase, to the PM. The complex activates protein SOS1 by phosphorylation, a PM-localized Na/H antiporter that prevents the accumulation of Na to toxic levels and regulates Na partition between roots and shoots. Cytosolic free Ca is a common second messenger in the signalling of a variety of abiotic stresses. The wide range of Ca-activated responses lead us to posit the existence of additional mechanisms relaying input signals that, together with this Ca signature, would initiate the specific response for a particular stress. The hypothesis of my proposal is that the increase in intracellular Na concentration provokes the alkalinisation of the intracellular pH, what would be sensed by SOS3. SOS3 would work as pH and Ca sensor, which would integrate this pH shift and the Ca signature to activate SOS pathway.
To support the hypothesis of cytosolic alkalinisation as a salt stress signal and SOS3 as a Ca and pH sensor, two experimental criteria must be meet: (1) salinity should induce an alkaline pH shift in plant cells, and (2) structural determinants of pH-sensing should be demonstrated in SOS3. To achieve my goal: (1) I will use a system, improved by Prof. Schumacher’s group, which allows the visualisation of pH changes in selected subcellular localisations through fluorescence ratio imaging experiments; and (2) I will use the technics learned and used duiring my postdoct stage to study whether SOS3 interactions and/or activity are pH dependent.
This research will provide a new paradigm of how sodicity is sensed by plant cells.