Descripción del proyecto
Interfacing between humans and machine using the sense of touch through ‘haptic devices’, is becoming increasingly important for consumer electronics, robotics, medical and automotive applications. One bio-inspired way to achieve this is by developing soft haptic skins that can both part and receive information through touch. However, developing soft haptic skins which have a significant tactile response and are robust enough for daily use in heavy use consumer applications is challenging. Our approach uses novel self-healing elastomers to create haptic skins in the form of dielectric actuators. By combining the self-healing elastomers with custom design approaches we also show higher spatial resolution and a larger tactile response in comparison to existing approaches. This allows for the creation of transparent, highly stretchable and self-healing haptic skins opening up their use in far more heavy use domains.
The market for haptic devices is large, and is estimated to reach $4. 5 billion by 2026. This is particularly driven by the need for novel machine-human interactions in the automotive, industrial machinery and medical industries. These market segments require reliable, robust haptic skins which can withstand high usage whilst providing a strong tactile response. We believe our haptic skin will allow for implementation and use in these high value target markets allowing for haptic skins to be used in a wide range of new and exciting application areas. The aim of this project is to bring our haptic skin to market by: performing market studies to quantify the economic margin and identify most promising markets; establishing links with industrial partners and customers; developing and optimizing haptic skins for robustness and tactile response to meet the demands of industry partners; running user studies using the proof-of-concept devices to benchmark and establish the benefits to industry.