Novel Dinuclear Late Transition Metal Catalysts for CO2 Olefin and CO2 Epoxide O...
Novel Dinuclear Late Transition Metal Catalysts for CO2 Olefin and CO2 Epoxide Olefin Copolymerization
Polyolefins are the most produced class of polymers every year (>130 million tons in 2015). Despite intensive research and development in this field over the past 50 years, both in academia and in industry, the synthesis of polar...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CO2Catalyst
Pilot scale demonstration of novel CO2 co polymerisation cat...
4M€
Cerrado
EUR2020-112080
IMPLEMENTACION DE ORGANOCATALIZADORES PARA LA ECONOMIA CIRCU...
60K€
Cerrado
PolySO2
Controlled metal catalysed polymerisation of SO2 derived sou...
225K€
Cerrado
CTQ2014-53458-P
ORGANOCATALISIS Y POLIMEROS SOSTENIBLES
83K€
Cerrado
CO2Polymerisation
Conversion of CO2 H2O to Polyethylene through Cascade Electr...
162K€
Cerrado
POLYFUN
Constructing functional polyolefins through an iron catalyze...
173K€
Cerrado
Información proyecto COOLEFIN
Duración del proyecto: 42 meses
Fecha Inicio: 2018-03-28
Fecha Fin: 2021-09-30
Líder del proyecto
UNIVERSITAT KONSTANZ
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
220K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Polyolefins are the most produced class of polymers every year (>130 million tons in 2015). Despite intensive research and development in this field over the past 50 years, both in academia and in industry, the synthesis of polar polyolefin copolymers remains challenging. These copolymers are highly desirable, most notably as compatibilizing agent in polymer blends. The COOLEFIN proposal is aiming to develop a sustainable alternative method to synthesise polar polyolefin from CO2/olefin and olefin/CO2/epoxide copolymerization - two challenging reactions still under explored. These new materials will reduce the use of petrochemically derived starting monomers and open a new field of sophisticated materials with unique properties. The COOLEFIN objectives are i) the synthesis and characterization of a new family of dinuclear late transition metal catalysts; ii) testing the series of catalysts for CO2/olefin and olefin/CO2/epoxide copolymerization; iii) physical characterization of the produced polymers; iv) kinetic and mechanistic studies of the polymerization reactions; v) optimization of the reactions conditions and scale up. The COOLEFIN action proposes a multidisciplinary research project on the frontier between inorganic, catalysis and materials chemistry, providing an optimum training experience and transfer of knowledge between all parties during both phases. In addition, the high impact of the study will be both of academic and industrial interest. It will put light to i) mechanism/rate of simple organometallic reactions (CO2/ethylene insertion); ii) the requirements for a good catalyst to perform these two polymerization reactions; iii) the link between the polymer micro/macrostructure and its physical properties to target specific applications. This project is a value added effort to bring two excellent polymerization concepts to the frontier of polymer catalysis research, which has never been given proper attention, despite being extremely promising.