Nonlinear topological Floquet phases in a fiber ring experiment
The realm of topological photonics relies on extreme flexibility of optical media for sculpting Hamiltonians with arbitrary properties in real and synthetic dimensions. Topological effects in the optical domain can provide robust...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The realm of topological photonics relies on extreme flexibility of optical media for sculpting Hamiltonians with arbitrary properties in real and synthetic dimensions. Topological effects in the optical domain can provide robust waveguiding and stable lasing, which is of extreme interest for integrated photonics. A powerful tool to imprint topological properties is periodic Floquet driving, which maps the energy bands onto a periodic quasienergy spectrum. Even richer physics was predicted to emerge if interactions are added into the system. However, the experimental studies of interacting Floquet matter remained scarce due to absence of suitable platforms. This project relies on a system of coupled fiber rings to realize a synthetic lattice for the study of interacting topological Floquet phases. This platform provides a unique combination of intrinsic Floquet nature due to periodicity of the light propagation in rings, full control over complex couplings, and tunable Kerr nonlinearities in the fibers, thus allowing to engineer many-body Floquet Hamiltonians and study topological physics inaccessible with other systems. Based on these unique features, the action aims at demonstration of novel topological Floquet phases and topological pumping in presence of interactions. This project stays at the cornerstone between topological physics, photonics, and nonlinear fiber optics, and perfectly fits the applicant’s experience for preparing him for a future career as an independent researcher.