Nonlinear Interaction of Terahertz Light with Two-Dimensional Nanomaterials
Two-dimensional (2D) nanomaterials such as graphene and transition metal dichalcogenides (TMDs), hold great promise for the engineering of modern nanophotonic devices that will operate at terahertz (THz) speed rates, with reduced...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-106875GB-I00
NANO-VISUALIZACION EN THZ DE MATERIALES 2D RETORCIDOS
221K€
Cerrado
MAT2014-53432-C5-1-R
FRONTERAS EN NANO-FOTONICA: GRAFENO Y PLASMONICA CUANTICA Y...
Cerrado
PLASNANO
Nano-scale Development of Plasmonic Amplifiers Based on 2D M...
3M€
Cerrado
MAT2017-88358-C3-1-R
NUEVOS FENOMENOS EN NANOFOTONICA CON MATERIALES AVANZADOS
145K€
Cerrado
ANTOMIC
Quantum nanoantennas for atomic scale optical spectroscopy
100K€
Cerrado
PID2020-115221GB-C41
FOTONICA CON MATERIALES CUANTICOS Y DE ANCHURA ATOMICA
169K€
Cerrado
Información proyecto TeraNanoLIGHT
Duración del proyecto: 11 meses
Fecha Inicio: 2024-03-01
Fecha Fin: 2025-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Two-dimensional (2D) nanomaterials such as graphene and transition metal dichalcogenides (TMDs), hold great promise for the engineering of modern nanophotonic devices that will operate at terahertz (THz) speed rates, with reduced energy requirements. Particularly, their nonlinear properties at THz frequencies, are expected to be the key element for the development of THz nanodevices that can generate new frequencies, control light propagation or act as nonlinear optical modulators. The TeraNanoLIGHT project aims to study with nanometer spatial and femtosecond temporal resolution, the ultrafast interaction of 2D nanomaterials with atomically strong (multi-MV/cm) THz fields, promoting the light-matter interactions into the non-perturbative regime. Intense THz transients will be combined with a scattering-type scanning near-field optical microscope (SNOM) to achieve atomically strong fields. Initially, THz surface plasmons (SPs) will be resonantly coupled in graphene, and their nonlinear behavior will be studied by monitoring their formation, propagation and temporal evolution as the THz field strength increases into the nonlinear regime. Furthermore, non-resonant nonlinearities will be explored, exploiting the oscillating THz field as an ultrafast AC bias. The possibility to observe high harmonic generation (HHG) with characteristics similar to those of atomic gases, will be studied in monolayer TMDs and heterostructures of different layers number and twist angles, excited by an out-of-plane polarized THz field. Finally, the opportunity of exploiting the extremely nonlinear interaction of light with matter, to improve the spatial resolution of SNOM, will be investigated. TeraNanoLIGHT project, envisions to facilitate our understanding about the ultrafast interaction of intense THz light with 2D materials and their high-order nonlinearities. This understanding is expected to trigger innovative research on the development of the future THz lightwave electronic devices.