Nonequilibrium thermodynamics of the origin of life
It has long been suggested that the laws of thermodynamics may specify thresholds for the origin of life, in terms of minimal free energy fluxes needed to perform basic life-like functions such as self-maintenance and self-replica...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2009-12365
COMPUTACION. REPLICACION Y ROTURA DE SIMETRIA EN SISTEMAS PR...
90K€
Cerrado
PID2020-113681GB-I00
AVANCES EN FISICA ESTADISTICA: DE LOS FUNDAMENTOS A LA FISIC...
242K€
Cerrado
PID2021-127795NB-I00
TRANSPORTE FUERA DEL EQUILIBRIO Y COMPORTAMIENTO COLECTIVO E...
28K€
Cerrado
FIS2017-87519-P
ABORDANDO LA COMPLEJIDAD DE SISTEMAS SOCIOTECNICOS, BIOLOGIC...
169K€
Cerrado
Descripción del proyecto
It has long been suggested that the laws of thermodynamics may specify thresholds for the origin of life, in terms of minimal free energy fluxes needed to perform basic life-like functions such as self-maintenance and self-replication. Such thresholds have yet to be derived, however, in large part because conventional thermodynamics is restricted to systems that are in equilibrium, macroscopic in scale, and that do not exchange information with their environments. On the other hand, protobiological systems (minimal systems that lay at the beginning of life) were likely far-from-equilibrium, nanoscale, and exchanged information (e.g., via simple mechanisms of adaptive response such as chemotaxis).
Recent times, however, have witnessed a revolution in nonequilibrium thermodynamics, which has produced far-reaching results concerning systems that are far-from-equilibrium, nanoscale, and may exchange information. These results are currently finding various applications in the study of biophysics of modern organisms. While the tools of nonequilibrium thermodynamics are well-suited for analyzing protobiological systems, they have yet to be applied in origin of life research. Instead, most existing models of protobiological systems are highly abstracted and ignore underlying thermodynamics. In addition, existing research in the field has paid very little attention to the role of information exchanges in early life.
This project will address these gaps, by using techniques from modern nonequilibrium thermodynamics to study the origin of life. Specifically, it will investigate thermodynamic tradeoffs involved in three essential protobiological functions (self-maintenance, self-replication, and Darwinian evolution), including in systems that exchange information with their environment. This project will shed light on fundamental thermodynamic thresholds, which will have important implications for our theoretical understanding of the origin of life.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.