Non-Equilibrium Field Theory of Molecular Rotations
At the interface between chemistry and physics, in this project we aim to develop a non-equilibrium field-theoretical approach to investigate molecular rotations in the presence of a many-body environment and driving laser fields....
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2012-37404-C02-01
DINAMICA DE PROCESOS MOLECULARES MEDIANTE EXPERIMENTOS CON L...
254K€
Cerrado
CTQ2015-65033-P
PROCESOS MOLECULARES FOTOINDUCIDOS Y COLISIONALES POR MEDIO...
270K€
Cerrado
MTM2009-14621-C02-01
CAOS HAMILTONIANO: ASPECTOS CUANTICOS Y CLASICOS, Y APLICACI...
23K€
Cerrado
CTQ2012-37404-C02-02
DINAMICA DE PROCESOS MOLECULARES MEDIANTE EXPERIMENTOS CON L...
34K€
Cerrado
Descripción del proyecto
At the interface between chemistry and physics, in this project we aim to develop a non-equilibrium field-theoretical approach to investigate molecular rotations in the presence of a many-body environment and driving laser fields.
Unlike electrons or atoms, molecules are extended objects, with a rich internal structure and the possibility to perform rotations, in compliance with the non-trivial algebra of quantized angular momentum. A long-standing goal of chemical physics is the control of bimolecular reactions: molecular reactivity strongly depends on the relative orientation of molecules which, in turn, is affected by the surrounding environment. External laser pulses are applied to prepare the reactants in certain rotational states and/or drive them to a specific alignments. Thus, the interplay between external driving and dissipation due to the solvent is crucial for the quantum control of molecular rotations.
In this inherently out-of-equilibrium context we aim to develop a field-theoretical approach to describe molecules in bosonic and fermionic baths. Starting from diatomic molecules, we aim to extend our theory to more complex structures and different shape and duration of the aligning laser pulses. The project aims to pave the way for a highly innovative strategy to model dynamics of molecular systems and composite impurities, based on quantum field theory in its non-equilibrium functional formulation.