Natural language processing (NLP) is concerned with
computer-based processing of natural language, with
applications such as human-machine interfaces and
information access. The capabilities of NLP are currently
severely limited...
Natural language processing (NLP) is concerned with
computer-based processing of natural language, with
applications such as human-machine interfaces and
information access. The capabilities of NLP are currently
severely limited compared to humans. NLP has high error
rates for languages that differ from English (e.g.,
languages with higher morphological complexity like Czech)
and for text genres that are not well edited (or noisy) and
that are of high economic importance, e.g., social media
text.
NLP is based on machine learning, which requires as basis a
representation that reflects the underlying structure of the
domain, in this case the structure of language. But
representations currently used are symbol-based: text is
broken into surface forms by sequence models that implement
tokenization heuristics and treat each surface form as a
symbol or represent it as an embedding (a vector
representation) of that symbol. These heuristics are
arbitrary and error-prone, especially for non-English and
noisy text, resulting in poor performance.
Advances in deep learning now make it possible to take the
embedding idea and liberate it from the limitations of
symbolic tokenization. I have the interdisciplinary
expertise in computational linguistics, computer science and
deep learning required for this project and am thus in the
unique position to design a radically new robust and
powerful non-symbolic text representation that captures all
aspects of form and meaning that NLP needs for successful
processing.
By creating a text representation for NLP that is not
impeded by the limitations of symbol-based tokenization, the
foundations are laid to take NLP applications like
human-machine interaction, human-human communication
supported by machine translation and information access to
the next level.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.