Non Leptonic Three Body B Decays Theory and Phenomenology
Tests of the Standard Model (SM) of Particle Physics and the search for New Physics (NP) is a central issue in the European program in High-Energy Physics. Weak decays of heavy hadrons have a unique potential for the extraction of...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ASymmetryNamedCP
CP symmetries in rare decays of beauty mesons
191K€
Cerrado
FPA2016-78220-C3-3-P
CALCULOS PRECISOS PERTURBATIVOS Y NO-PERTURBATIVOS DE LAS IM...
169K€
Cerrado
Beauty2Charm
Precision tests of the Standard Model using Beauty to Charm...
1M€
Cerrado
BARD
B-resonance Algorithm using Rare Decays
1M€
Cerrado
PENGUIN
Search for New Physics in Electroweak Penguin Transitions at...
200K€
Cerrado
FPA2014-54459-P
PARTICULAS ELEMENTALES: EL MODELO ESTANDAR Y SUS EXTENSIONES
350K€
Cerrado
Información proyecto NIOBE
Duración del proyecto: 45 meses
Fecha Inicio: 2016-03-04
Fecha Fin: 2019-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Tests of the Standard Model (SM) of Particle Physics and the search for New Physics (NP) is a central issue in the European program in High-Energy Physics. Weak decays of heavy hadrons have a unique potential for the extraction of SM parameters, the study of CP violation, and the search for NP. Among these, decays of B mesons into three final hadrons are of huge phenomenological interest. They have been studied experimentally at B factories and at the LHC, and will be a cornerstone in the physics program at Belle-II. However, the theoretical basis for such processes has yet not been developed. Through this project, we will establish the theoretical grounds for the description of non-leptonic three-body B decays, from basic principles to phenomenological applications.
The theoretical description of three-body decays requires a generalization of the theory of non-leptonic two-body B decays, which is by now well established. It involves factorization of perturbative and non-perturbative physics --most conveniently achieved in the framework of Soft-Collinear Effective Theory (SCET)--, the calculation of perturbative kernels, and the study of non-perturbative matrix elements. However, this generalization is non-trivial and requires addressing new issues and facing new challenges, making this a highly innovative project.
We are three the participants in this action:
- Javier Virto (Main Researcher), with a wide experience in the theory and phenomenology of B decays, will be the driving force in this project, while receiving an intensive training from two of the developers of the theory of hadronic B decays.
- Iain Stewart (US partner), developer of Soft-Collinear Effective Theory.
- Martin Beneke (EU Host), developer of the QCD Factorization approach and SCET in position space.