N-Heterocyclic Carbenes on Silicon: from Structure to Function
The significance of cutting-edge nanoelectronics is inherently tied to the utilization and integration of silicon. The material is embedded as a semiconductor in a multitude of devices, such as nano- and microchips for computing....
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SMARTFACE
Duración del proyecto: 23 meses
Fecha Inicio: 2024-06-01
Fecha Fin: 2026-05-31
Líder del proyecto
UNIVERSITAET MUENSTER
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The significance of cutting-edge nanoelectronics is inherently tied to the utilization and integration of silicon. The material is embedded as a semiconductor in a multitude of devices, such as nano- and microchips for computing. Given its paramount importance for the high-tech industry, intense research focuses on manipulating and optimising silicon surfaces. Silicon coating efforts aim to increase its resistance against harsh conditions (temperature, high electron potential, UV light, etc.), steer its electric conductivity, or covalently attach (bio)molecules for specific applications (such as biosensing). Depending on the objective, strategies for surface engineering include techniques such as atomic layer deposition or silanization. A fundamentally novel approach to functionalize silicon surfaces has recently been developed by the team of Prof. Frank Glorius from the University of Münster, who described a strategy to immobilize derivatives of N-heterocyclic carbenes on a boron-doped silicon substrate. Transposing this concept to industrially applied silicon surfaces such as Si(100), SMARTFACE aims for the following research objectives: Develop a general strategy for NHC immobilization on silicon, study the connection of the molecular NHC structure and surface coverage, understand the impact of the coating on the material, and, finally, explore the effect of the surface modification on silicon’s relevant properties. The Glorius group has a unique knowledge base in the field of NHCs and surface engineering and simultaneously possesses state-of-the-art hardware to analyze fabricated materials. Given its potentially transformative impact on the field of silicon surface engineering, SMARTFACE perfectly falls within the scope of the HE Work Programme, specifically in the pursuit of ‘developing and mastering the digital and key enabling technologies of the future’.