Next-gen ultrasound imaging by closing the perception-action loop
Ultrasound (US) can revolutionize and democratize medical imaging if it offers: (1) access for everyone, and (2) excellent Image Quality (IQ). MRI offers (2) but is expensive and will thus not likely be able to provide (1). Low-c...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FPA2010-14891
CALIDAD DE IMAGEN Y CUANTIFICACION EN TOMOGRAFIA POR EMISION...
177K€
Cerrado
TIN2012-33116
INTEGRACION DE DATOS ANATOMICO-FUNCIONALES MEDIANTE MAPAS DE...
116K€
Cerrado
FJC2021-048082-I
Procesamiento de señales biomédicas con inteligencia artific...
65K€
Cerrado
TEC2017-82408-R
RECONSTRUCCION DE IMAGEN DE RESONANCIA DINAMICA DE ALTA RESO...
156K€
Cerrado
TED2021-130944B-C21
SURGERYAI-MODELS:INCORPORANDO HERRAMIENTAS DIGITALES E IA EN...
154K€
Cerrado
RTC-2017-6682-1
Sistema de modelado 3D automatico para salud [NEXTMED]
198K€
Cerrado
Información proyecto US-ACT
Duración del proyecto: 61 meses
Fecha Inicio: 2023-02-22
Fecha Fin: 2028-03-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Ultrasound (US) can revolutionize and democratize medical imaging if it offers: (1) access for everyone, and (2) excellent Image Quality (IQ). MRI offers (2) but is expensive and will thus not likely be able to provide (1). Low-cost US hardware technology will enable (1) in the future but is not expected to yield the needed breakthrough for (2). Consequently, any paradigm-shifting advance in signal processing technology that achieves US with excellent IQ will have a huge impact.
I propose a conceptually new and highly-unconventional approach that I believe can lead to a new generation of US technologies with excellent IQ. I will formally describe US systems as intelligent autonomous agents that perform actions and perception using probabilistic inference: the action is the acquisition, probing the world, and the perception is the reconstruction that infers what anatomy most likely generated the acquired US data. I conclude that current US systems are in essence flawed agents since (1) actions are not driven by perception, i.e. the perception-action loop is broken, and (2) their generative perception models are naive. My proposal will address this by closing the perception-action loop and offering strong perception models based on advanced deep generative networks. This breaks a fundamental tenet in US imaging, where I put forth the important concept that the acquisition and perception should work together to identify the point on the low-dimensional manifold of pure anatomy (described by the generative model) that is being imaged.
My intelligent US agents will pursue excellent IQ under the heading of a single probabilistic principle: minimization of ``surprise’’ under the agent’s own prior belief (the generative model) that such high-quality images can indeed be achieved. With this, we open a new frontier within active imaging (in US and beyond) where data acquisition and information processing are treated jointly based on expressive generative density functions.