Next generation ultrafast continuously running imaging system for biomedical app...
Next generation ultrafast continuously running imaging system for biomedical applications
"Ultrafast continuously running cameras are a vital tool in capturing and visualizing ultrafast non-repetitive events, such as chemical dynamics, microfluidics, and laser nuclear fusion. Following active involvement in the success...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto NULTIS
Líder del proyecto
UNIVERSITY OF KENT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
100K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Ultrafast continuously running cameras are a vital tool in capturing and visualizing ultrafast non-repetitive events, such as chemical dynamics, microfluidics, and laser nuclear fusion. Following active involvement in the successful development of the world’s fastest continuously running camera over the last two years, the applicant proposes to develop the next generation ultrafast imaging systems and to apply the developed systems in interdisciplinary scientific research.
This research has two main objectives:
1. To develop the next generation ultrafast (~100 Mfps) imaging systems with new capabilities, such as phase-contrast imaging, Raman scattering detection, on-chip integration and with significantly enhanced spatial resolution.
2. To apply the developed instruments in biomedical research.
The proposed research builds on the applicant's extensive expertise in photonics and electronics with a good track record of collaboration with researchers from different disciplines. To develop the next generation ultrafast imaging system, original and innovative techniques will be utilized. For instance, by incorporating a Michelson interferometer into the imaging optics, phase-contrast imaging capability will be created. Real-time Raman-spectroscopy-based imaging will be achieved by mirroring the Raman spectrum to a temporal waveform and applying distributed Raman amplification. Photonic integrated circuits (PIC) technology will be used to develop an integrated on-chip imaging system. Physical implementation of the system in shorter wavelength region and applying a compressive sampling algorithm will greatly improve spatial resolution. Furthermore, combining with microfluidic chips, next generation flow microscope system will be developed for high-throughput screening of rare cancer cells in blood.
The technique developed will provide an indispensable tool for significant advancements in interdisciplinary research where high-throughput imaging instruments are essential."