Next Generation Power Sources for Self sustainable Devices Integrated Multi so...
Next Generation Power Sources for Self sustainable Devices Integrated Multi source Energy Harvesters
In recent years, various energy harvesting techniques have been realised to overcome shortcoming of batteries in terms of lifespan, overall cost-effectiveness and chemically safe electronics. Energy harvesters convert different fo...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MICROGENS
MicroElectroMechanical Generators Based on High Performance...
45K€
Cerrado
PID2019-104732RB-I00
LAMINAS DELGADAS DE PEROVSKITAS FERROELECTRICAS SIN PLOMO IN...
109K€
Cerrado
SYNERGY
SYmbiosis for eNERGY harversting concepts for smart platform...
897K€
Cerrado
ERG
ENERGY FOR A GREEN SOCIETY FROM SUSTAINABLE HARVESTING TO S...
26M€
Cerrado
H-HOPE
Hidden Hydro Oscillating Power for Europe
5M€
Cerrado
ERG
ENERGY FOR A GREEN SOCIETY: FROM SUSTAINABLE HARVESTING TO S...
26M€
Cerrado
Información proyecto NextGEnergy
Duración del proyecto: 27 meses
Fecha Inicio: 2016-02-25
Fecha Fin: 2018-05-31
Líder del proyecto
OULUN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
191K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In recent years, various energy harvesting techniques have been realised to overcome shortcoming of batteries in terms of lifespan, overall cost-effectiveness and chemically safe electronics. Energy harvesters convert different forms of environmental energies into electricity thus making devices self-powered. However, with over a decade’s development, energy harvesters have not been able to overtake batteries yet, although academia and industry are keen to apply it in electronics. One of the reasons is that the power level provided by a single-source energy harvester, which most research has been focused on, is not high or stable enough. Therefore, a crucial and urgent question has been raised – how to release the huge potential of energy harvesting technology? This proposed action is addressing the above scientific/engineering question by exploring multi-source energy harvesting on a single piece of material. Perovskite structured materials are able to exhibit piezoelectric, pyroelectric or photovoltaic effect which has been utilised to harvest kinetic, thermal or solar energy separately. This action will combine these three effects on the same perovskite for the first time ever. Solid-state reaction will be used to synthesise the materials; thick- and thin-films will be deposited through physical methods; the materials and films will be structurally analysed, multi-functionally evaluated and compositionally optimised, to establish new inter principles of kinetic-thermal-solar multi-harvesting. Such a research topic of multi-functional materials and devices is also a ‘‘roadmap’’ of the European Science Foundation. It will conduct an interdisciplinary research across piezoelectricity, pyroelectricity and photovoltaics, and will require contributions from materials science, electronics and chemistry. Positive outcome of this action will lead to a breakthrough in the development of self-sustainable devices, and thus leading to a revolution in smart human societies.