Next generation Plasma based Electron Beam Sources for High brightness Photon S...
Next generation Plasma based Electron Beam Sources for High brightness Photon Science
High-quality electron beams are required for advanced light sources and for high energy physics. Engines of discovery such as free-electron-lasers (FELs) and other bright light sources, are driven by electron beams today produced...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
High-quality electron beams are required for advanced light sources and for high energy physics. Engines of discovery such as free-electron-lasers (FELs) and other bright light sources, are driven by electron beams today produced in km-long state-of-the-art linear accelerators (linacs). A complementary alternative are cm-scale plasma-based accelerators, which are feasible in university-lab scale environments. The NeXource project aims at combining key advantages of both types of accelerators to realize hybrid plasma-based accelerators orders of magnitude smaller and at the same time with electron beam quality orders of magnitude better than state-of-the-art. This has far-reaching impact as it will enable the construction of table-top coherent hard x-ray sources with extreme brightness.
This project is motivated by experimental breakthroughs obtained in the E210 collaboration at the linac-driven plasma accelerator facility FACET at the Stanford Linear Accelerator Center (SLAC) and by the progress at laser-plasma-accelerator facilities, combined with novel conceptual approaches towards beams with unprecedented 6D-brightness by using tailored beamloading in plasma-based photocathodes.
A dedicated setup for plasma photocathode prototyping and hybrid plasma acceleration will be established at the Scottish Centre for the Application of Plasma-based Accelerators (SCAPA) to develop beam brightness transformers. This R&D will be complemented by campaigns at SLAC, DESY, Daresbury Laboratory and laser-plasma-accelerator labs in Europe. Start-to-end simulations indicate that hard x-ray FEL’s with ultrahigh gain and other advanced light sources can be realised with such electron beams in university-scale labs, which would have transformative impact on photon science and a wide range of natural, life and material science.