Innovating Works

NEWBORN

Financiado
NExt generation high poWer fuel cells for airBORNe applications
NEWBORN focuses on realistic and commercially viable project outcomes significantly exceeding the Call topic Expected Outcomes. This is the only path to bring a real impact, well beyond paperwork and test rigs. With this in mind,... NEWBORN focuses on realistic and commercially viable project outcomes significantly exceeding the Call topic Expected Outcomes. This is the only path to bring a real impact, well beyond paperwork and test rigs. With this in mind, the project applies the steppingstone principle and intends to bring aviation graded fuel cells into the market as soon as safely possible. This will generate operational data to support certification on CS-25 aircraft. It will further provide vital acceptance gap mitigation in the conservative air transport environment. The 18 multi-disciplinary partners, including 3 non-traditional aerospace partners and 2 SMEs, will work on 28 key enabling technologies. They will be matured and optimized to support an EIS of CS-23 aircraft by 2030 and regional aircraft by 2035. The ambition of the project is to achieve an overall propulsion system efficiency of 50% by 2026, calculated as a ratio of energy on the propeller shaft to the hydrogen lower heating value. This ambition greatly surpasses the expected outcome of the HPA-02 Call. Similarly, by the end of 2025, the project will demonstrate widely scalable fuel cell power source technology with a power density of >1.2 kW/kg and stack power density of >5 kW/kg. Technologies will be adaptable to different maximum flight altitudes of ≤ FL250 and ≤FL450, and scalable down to ~250kW and reusable for secondary power in SMR flying altitudes by 2026. An innovative cryogenic tank concept will be integrated, demonstrating a gravimetric index of 35% for the CS-23 aircraft and scalable up to 50% for regional aircraft. The project will also address high power density high voltage energy conversion, propulsion systems, and the next generation microtube heat exchangers, along with an accurate digital twin of the overall system. All together, NEWBORN will develop a technology demonstrator prepared for flight demonstration in Clean Aviation Phase 2. ver más
30/06/2026
44M€
Duración del proyecto: 41 meses Fecha Inicio: 2023-01-01
Fecha Fin: 2026-06-30

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-01-01
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 44M€
Líder del proyecto
HONEYWELL INTERNATIONAL SRO No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5