Data is often available in matrix form, in which columns are samples, and processing of such data often entails finding an approximate factorisation of the matrix in two factors. The first factor yields recurring patterns characte...
Data is often available in matrix form, in which columns are samples, and processing of such data often entails finding an approximate factorisation of the matrix in two factors. The first factor yields recurring patterns characteristic of the data. The second factor describes in which proportions each data sample is made of these patterns. Latent factor estimation (LFE) is the problem of finding such a factorisation, usually under given constraints. LFE appears under other domain-specific names such as dictionary learning, low-rank approximation, factor analysis or latent semantic analysis. It is used for tasks such as dimensionality reduction, unmixing, soft clustering, coding or matrix completion in very diverse fields.
In this project, I propose to explore three new paradigms that push the frontiers of traditional LFE. First, I want to break beyond the ubiquitous Gaussian assumption, a practical choice that too rarely complies with the nature and geometry of the data. Estimation in non-Gaussian models is more difficult, but recent work in audio and text processing has shown that it pays off in practice. Second, in traditional settings the data matrix is often a collection of features computed from raw data. These features are computed with generic off-the-shelf transforms that loosely preprocess the data, setting a limit to performance. I propose a new paradigm in which an optimal low-rank inducing transform is learnt together with the factors in a single step. Thirdly, I show that the dominant deterministic approach to LFE should be reconsidered and I propose a novel statistical estimation paradigm, based on the marginal likelihood, with enhanced capabilities. The new methodology is applied to real-world problems with societal impact in audio signal processing (speech enhancement, music remastering), remote sensing (Earth observation, cosmic object discovery) and data mining (multimodal information retrieval, user recommendation).ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.