New paradigms for correlated quantum matter Hierarchical topology Kondo topolo...
New paradigms for correlated quantum matter Hierarchical topology Kondo topological metals and deep learning
Discovering, classifying and understanding phases of quantum matter is a core goal of condensed matter physics. Next to the notion of symmetry breaking phases, the concept of topological phases of matter is a prevailing theme of r...
Discovering, classifying and understanding phases of quantum matter is a core goal of condensed matter physics. Next to the notion of symmetry breaking phases, the concept of topological phases of matter is a prevailing theme of recent research. Topological phases are envisioned for various applications due to their universal and robust properties, such as protected conducting boundary modes, and provoke fundamental questions about the nature of many-body quantum states by providing the basis for exotic quasiparticles.
In this ERC research project, I propose several new topological phases and novel numerical approaches for studying and classifying the most sought-after topological phases of matter. Concretely, I propose the concept of three-dimensional hierarchical topological insulators, which, in contrast to the known topological phases, do not posses gapless surface, but protected gapless edge modes. Moreover, I plan to study topological metals arising in strongly correlated Kondo systems, going beyond the current paradigm of considering topological metals that arise in the absence of electronic correlations. Furthermore, I propose to make the analogous step for topological superconductors, which have been studied as free models to search for Majorana quasiparticles: For the first time, I want to explore strongly interacting systems that realize the more powerful parafermion quasiparticles with numerical techniques. Finally, in a cross-disciplinary and exploratory sub-project, I will employ methods of deep neural networks to classify strongly correlated quantum phases using supervised learning combined with a technique called deep dreaming.
Each of these sub-projects has the potential to make a paradigm-changing contribution to the study of strongly correlated and topological states of quantum matter and the combination of them allows to take advantage of synergy effects and a balance between high-risk and definitely feasible key developments.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.