String Theory is currently the only known theoretical framework that unifies the concepts of quantum mechanics and gravity in a consistent way. As such, it makes concrete quantitative predictions for the interaction of gravitons...
String Theory is currently the only known theoretical framework that unifies the concepts of quantum mechanics and gravity in a consistent way. As such, it makes concrete quantitative predictions for the interaction of gravitons in the form of scattering amplitudes. Unfortunately, the technical complexity of the theory is staggering, and most attempts to directly compute such scattering amplitudes beyond the leading orders have been stifled by technical difficulties.This project aims to overcome these difficulties by applying three new and unconventional tools to the problem. StringScats's three-pronged strategy leverages numerical techniques, saddle-point approximation, and exact evaluation techniques such as the Hardy-Littlewood circle method. It seeks to crack the necessary hard computations in string perturbation theory and obtain a long-sought glimpse into the quantum properties of gravity. Among the numerous potential rewards we would, for example, for the first time ever get a direct handle on the analytic structure of a quantum gravity amplitude and understand the very high energy behaviour of String Theory and how it interacts with the UV-finiteness of the theory.StringScat will also have ramifications in neighboring fields such as black hole physics, S-matrix bootstrap, number theory and the geometry of the moduli space of Riemann surfaces that features prominently in the calculation. Scattering amplitudes represent one of the handful of accessible windows into quantum gravity and hence offer great potential for tangible progress in the subject.Despite the enormous importance of this topic in physics, it has received far too little attention. Recent advances in the understanding of formal aspects of the string perturbation theory, developments of numerical methods, and the increasing synthesis of the subject with mathematics, now permit us to attack the problem in earnest.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.