Neutrinos at High Energies Disentangling Galactic and Extra galactic components
In 2013 the IceCube South Pole Neutrino Observatory has received the Physics World award for the Breakthrough of the
Year for the first observations of high-energy cosmic neutrinos. The discovery, indeed, represents the birth of a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NEUCOS
Neutrinos and the origin of the cosmic rays
2M€
Cerrado
BES-2016-077880
PRECISE DETERMINATION OF THE NEUTRINO MASS FROM COSMOLOGY
93K€
Cerrado
RYC-2011-08649
Neutrino and Astroparticle Physics and Cosmology
184K€
Cerrado
MuSES
Multi-messenger Studies of Extragalactic Super-colliders
3M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In 2013 the IceCube South Pole Neutrino Observatory has received the Physics World award for the Breakthrough of the
Year for the first observations of high-energy cosmic neutrinos. The discovery, indeed, represents the birth of a new
research field, the neutrino astronomy, that can definitively shed light on the sources of high-energy cosmic-rays and on the
mechanisms through which they are produced. The origin of all of the detected neutrinos is still to be correctly identified.
Just recently evidence for emission from the direction of the blazar TXS 0506+056 has been reported. The most
important point to understand is if the neutrino events are all of extra-galactic origin or a galactic component is present, and
which are the specific characteristics, like size of the acceleration region and magnetic field, of the possible sources. To
achieve this goal a multi-messenger approach is necessary. In particular, it is important to compare the single point sources
available in the current gamma-ray catalogues with the IceCube data, considering their spatial, timing and energy
distribution. After identifying specific plausible candidates for the IceCube events, it is possible to consider the sensitivity of
gamma-ray experiments, like the High-Altitude Water Cherenkov Observatory and the planned Cherenkov Telescope Array
Project, to verify the origin of the IceCube events. For the final correct identification of the IceCube neutrinos, the detection of
the events from different experiments will be fundamental. In this regard, the estimation of the prospects for ANTARES, for
the possible extension of IceCube and for the planned cubic kilometre neutrino telescope in the Northern Hemisphere,
KM3NeT, is mandatory.