NEUROmorphic energy-efficient secure accelerators based on Phase change material...
NEUROmorphic energy-efficient secure accelerators based on Phase change materials aUgmented siLicon photonicS
The growing need to transfer massive amounts of data among multitudes of interconnected devices for e.g., self-driving vehicles, IoT or industry 4.0 has led to a quest towards low-power and secure approaches to locally processing...
The growing need to transfer massive amounts of data among multitudes of interconnected devices for e.g., self-driving vehicles, IoT or industry 4.0 has led to a quest towards low-power and secure approaches to locally processing data. Neuromorphic computing, a brain-inspired approach, addresses this need by radically changing the processing of information. Although neuromorphic electrical computing systems offer advantages in terms of CMOS implementations and scalability, they inherit limitations of conventional electronics such as low energy-efficiency, high latency and low bandwidth density. Besides, such systems often require robust security layers for e.g., safety-critical applications. Security layers based on memory-stored secret keys are prone to several types of memory-accessing attacks. Therefore, silicon hardware approaches for security primitives such as physical unclonable functions (PUFs) are currently investigated because of their absence of long-term digital memory storage. Although electronic PUFs have received major attention thanks to their native CMOS implementation, for secure authentication they are prone to machine learning and side-channel attacks due to their CMOS technology.
The NEUROPULS project aims to build next-generation low-power and secure edge-computing systems by developing novel photonic computing architectures and security layers based on photonic PUFs in augmented silicon photonics CMOS-compatible platforms. The integration of emerging non-volatile phase change materials for synapses/neurons and III-V materials for on-chip spiking sources, for the first time, will allow to build novel neuromorphic accelerators featuring RISC-V compliant interfaces for smooth adoption and programmability. Optimal performance will be achieved thanks to a novel full-system simulation platform for design space exploration. Three relevant use-cases will be considered for benchmarking to demonstrate 2 orders of magnitude energy efficiency improvement.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.