The main objective of this proposal is to understand how vocal communication is used to organize social groups and in turn how brain circuits have evolved to process social information encoded in vocal cues. The naked mole-rat, as...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MarmOTChat
Oxytocin regulates marmosets’ affiliation and vocal communic...
1M€
Cerrado
sociOlfa
Learning from social scents from territory to identity
1M€
Cerrado
FLEXIN
Context-dependent flexibility in innate behaviours and their...
2M€
Cerrado
EMACTIVE
The interactive side of emotion A neuroethological approac...
2M€
Cerrado
PSI2012-30744
LAS SEÑALES OLOROSAS Y AUDITIVAS EN LA PROMOCION DE LOS CUID...
29K€
Cerrado
PHYLOMUSIC
Neural encoding of novel and familiar proto-musical patterns...
189K€
Cerrado
Información proyecto SOFTCHIRP
Duración del proyecto: 65 meses
Fecha Inicio: 2022-01-21
Fecha Fin: 2027-06-30
Descripción del proyecto
The main objective of this proposal is to understand how vocal communication is used to organize social groups and in turn how brain circuits have evolved to process social information encoded in vocal cues. The naked mole-rat, as one of only two eusocial mammals, is especially well-suited to this research question. Naked mole-rats form highly cooperative social units and like bees, wasps, and ants, live in multigenerational colonies under the control of a single breeding female, queen. In addition to their extreme cooperativity, these rodents are highly vocal with a repertoire (greater than 25 distinct vocalizations) comparable to that of non-human primates. I recently identified that naked mole-rat greeting calls, soft chirps, encode information about individual identity and are modulated to create distinct colony-specific dialects. Vocal dialects can be learned early in life and are influenced by social cues (i.e., the presence or absence of the queen). These features position the naked mole-rat as a promising, yet unexplored model for investigating the evolution of neural circuits for vocal communication, sociality and language. I will employ a combination of behavioral, computational, electrophysiological, molecular and in vivo imaging tools to investigate how: (i) social identity is encoded at the earliest stages of auditory processing within the naked mole-rat brain, (ii) how neural circuits for vocal production are shaped by auditory environments during development and finally (iii) how social interactions acting through transcriptomic and molecular mechanisms influence vocal behaviors. This work has the potential to not only expand our understanding of the neural architecture underling the sensory coding and production of vocalizations, but also to provide insights into complex social behaviors such as empathy and altruism.