Neural circuit dynamics underlying expectation and their impact on the variabili...
Neural circuit dynamics underlying expectation and their impact on the variability of perceptual choices
Just as our experience has its origin in our perceptions, our perceptions are fundamentally shaped by our experience. How does the brain build expectations from experience and how do expectations impact perception? In a Bayesian f...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Descripción del proyecto
Just as our experience has its origin in our perceptions, our perceptions are fundamentally shaped by our experience. How does the brain build expectations from experience and how do expectations impact perception? In a Bayesian framework, expectations determine the environment’s prior probability, which combined with stimulus information, can yield optimal decisions. While the accumulation-to-bound model describes temporal integration of sensory inputs and their combination with the prior, we still lack electrophysiological evidence showing neural circuits that integrate previous events adaptively to generate advantageous expectations.
I aim to understand (1) how circuits in the cerebral cortex integrate the recent history of stimuli and rewards to generate expectations, (2) how expectations are combined with sensory input across the processing hierarchy to bias decisions and (3) whether the dynamics of the expectation can dominate neuronal and choice variability. I will train rats in a new auditory discrimination task using predictable stimulus sequences that, once learned, are used to compute adaptive priors that improve discrimination. I will perform population recordings and optogenetic manipulations to identify the brain areas involved in the computation of priors in the task. To reveal the circuit mechanisms underlying the observed dynamics I will train a computational network model to classify fluctuating inputs and, by adapting its dynamics to the statistics of the stimulus sequence, accumulate evidence across trials to maximize performance. The model will generalize the accumulation-to-bound model by integrating information across various time scales and will partition choice variability into that caused by the dynamics of the prior or by fluctuations in the stimulus response. My proposal points at a paradigm shift from viewing neuronal variability as a corrupting source of noise to the result of our brain’s inevitable tendency to predict the future.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.