Neural circuit dynamics underlying expectation and their impact on the variabili...
Neural circuit dynamics underlying expectation and their impact on the variability of perceptual choices
Just as our experience has its origin in our perceptions, our perceptions are fundamentally shaped by our experience. How does the brain build expectations from experience and how do expectations impact perception? In a Bayesian f...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SAF2013-46717-R
LA REPRESENTACION DE LA EXPECTATIVA EN REDES CORTICO-BASALES...
61K€
Cerrado
RISKYREWARDS
Neuronal processing of risky rewards
2M€
Cerrado
BayesianHumanCortex
Bayesian computations in the human neocortex deciphering th...
258K€
Cerrado
FIS2012-33388
CIRCUITOS CORTICALES Y DINAMICA NEURONAL EN PROCESOS DE TOMA...
59K€
Cerrado
PID2019-111629GB-I00
DESCIFRANDO LOS MECANISMOS DE LA INFERENCIA PERCEPTIVA EN EL...
109K€
Cerrado
RTI2018-099750-B-I00
LOS MECANISMOS NEURONALES RESPONSABLES DE LA GENERACION DE S...
218K€
Cerrado
Información proyecto PRIORS
Duración del proyecto: 65 meses
Fecha Inicio: 2016-08-30
Fecha Fin: 2022-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Just as our experience has its origin in our perceptions, our perceptions are fundamentally shaped by our experience. How does the brain build expectations from experience and how do expectations impact perception? In a Bayesian framework, expectations determine the environment’s prior probability, which combined with stimulus information, can yield optimal decisions. While the accumulation-to-bound model describes temporal integration of sensory inputs and their combination with the prior, we still lack electrophysiological evidence showing neural circuits that integrate previous events adaptively to generate advantageous expectations.
I aim to understand (1) how circuits in the cerebral cortex integrate the recent history of stimuli and rewards to generate expectations, (2) how expectations are combined with sensory input across the processing hierarchy to bias decisions and (3) whether the dynamics of the expectation can dominate neuronal and choice variability. I will train rats in a new auditory discrimination task using predictable stimulus sequences that, once learned, are used to compute adaptive priors that improve discrimination. I will perform population recordings and optogenetic manipulations to identify the brain areas involved in the computation of priors in the task. To reveal the circuit mechanisms underlying the observed dynamics I will train a computational network model to classify fluctuating inputs and, by adapting its dynamics to the statistics of the stimulus sequence, accumulate evidence across trials to maximize performance. The model will generalize the accumulation-to-bound model by integrating information across various time scales and will partition choice variability into that caused by the dynamics of the prior or by fluctuations in the stimulus response. My proposal points at a paradigm shift from viewing neuronal variability as a corrupting source of noise to the result of our brain’s inevitable tendency to predict the future.