Neural Active Visual Prosthetics for Restoring Function
Approaches that aim to restore vision for blind individuals with electrical stimulation of the brain have hit a technology wall. Existing systems only stimulate a small set of neurons in the brain, and interfaces have a longevity...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HYPERSTIM
High-dimensional electrical stimulation for visual prosthesi...
2M€
Cerrado
PID2019-110410RB-I00
IMPLANTE MILIMETRICO CON INTELIGENCIA ARTIFICIAL INTEGRADA P...
138K€
Cerrado
BRAINBOW
Linking biological and artificial neuronal assemblies to res...
1M€
Cerrado
B-CRATOS
Wireless Brain Connect inteRfAce TO machineS B CRATOS
5M€
Cerrado
BQ-Technology
BrainQ non invasive very low intensity BCI based frequenc...
71K€
Cerrado
Outer-Ret
Non-invasive patterned electrical neurostimulation of the re...
3M€
Cerrado
Información proyecto NeuraViPeR
Duración del proyecto: 57 meses
Fecha Inicio: 2020-05-28
Fecha Fin: 2025-02-28
Líder del proyecto
UNIVERSITAT ZURICH
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
4M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Approaches that aim to restore vision for blind individuals with electrical stimulation of the brain have hit a technology wall. Existing systems only stimulate a small set of neurons in the brain, and interfaces have a longevity of only a few months. NeuraViPeR aims to lay ground-breaking foundation for a radically new paradigm which consists not only of constructing a neuroprosthesis with thousands of electrodes but also the creation of adaptive machine learning algorithms for a new brain-computer interfacing technology, which will remain safe and effective for decades. Several technological breakthroughs will be established. First, innovative approaches for stimulation with high-electrode-count interfacing with the visual cortex; creating thin (~10 µm thick, < 50 µm wide) flexible probes that cause minimal tissue damage; new electrode coatings that will be stable in spite of long-term repeated electrical stimulation; and novel microchip methods for combining online channeling of the stimulation currents to many thousands of electrodes, combined with monitoring of neuronal activity in higher cortical areas. Second, new deep learning algorithms that transform the camera footage into stimulation patterns for the cortex and that use feedback on recorded brain states and eye tracking to improve perception in a closed-loop approach. The algorithms will extract maximally relevant information to enable blind individuals to recognize objects and facial expressions and navigate through unfamiliar environments. The software algorithms will be translated onto low-latency, power-efficient neuromorphic deep learning hardware, to create a neuroprosthesis system that is lightweight, robust, and portable. NeuraViPeR will tackle these challenges through interdisciplinary teams with complementary expertise in computational, systems and clinical neuroscience, materials engineering, microsystems design, and deep learning.