Innovating Works

SensBrain

Financiado
Neural computational and acoustic principles of auditory sensory processing sen...
Hearing is an essential part of human life. We communicate through the voice, use sounds to navigate in the world and enjoy listening to music. On the other hand noise pollution in living and working environments causes serious he... Hearing is an essential part of human life. We communicate through the voice, use sounds to navigate in the world and enjoy listening to music. On the other hand noise pollution in living and working environments causes serious health problems impacting millions of people and many neurological or psychiatric conditions are accompanied by sensory symptoms. The personality concept of Sensory Processing Sensitivity (SPS) describes a continuum from hyper- to hyposensitivity profiles even in the healthy population. However, the underlying neural mechanisms are unknown and an objective acoustic tool to assess auditory SPS is missing. This groundbreaking, interdisciplinary action will adress this gap by combining methods from cognitive and computational neuroscience, acoustics and psychology. I will compute mathematical models to characterize auditory performance, unravel the biological imprint of SPS using neuroimaging, and ultimately provide the scientific community with a much-needed acoustic battery to assess SPS differences objectively. Predictive coding, a general theory of neural function inspired by research in artificial intelligence, machine learning, and systems neuroscience, will provide the theoretical framework for the computational models. The interdisciplinary environment at the Center for Music in the Brain (MIB) at Aarhus University, has as its primary goal to investigate predictive coding of music. Therefore, it is the perfect location for this work and my training in psychology, auditory neurosciences and music make me the ideal person for this action. At MIB I will enhance my neuroscience (MEG), computational and programming skills. During a secondment at Oxford University I will extend the analyses to whole-brain approaches. Overall the action will foster my development as an indepent researcher capable of leading my own research group with groundbreaking potential for academia and industrial fields of application. ver más
31/08/2024
AU
207K€
Perfil tecnológico estimado
Duración del proyecto: 41 meses Fecha Inicio: 2021-03-23
Fecha Fin: 2024-08-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2024-08-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 207K€
Líder del proyecto
AARHUS UNIVERSITET No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5