Neural Computational Principles of Multisensory Integration during Active Sens...
Neural Computational Principles of Multisensory Integration during Active Sensing and Decision Making
Perceptual decisions rely on the integration of information from the environment, which typically involves the combination of stimuli from different senses. The quality of sensory evidence depends highly on our actions that affect...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MULTISENSE
The merging of the senses understanding multisensory experi...
3M€
Cerrado
BRAINSENSE
Multisensory processing in cortical networks underlying the...
75K€
Cerrado
MIA
Multisensory Integration and Attention
1M€
Cerrado
MBraiS
The Multisensory Brain in a Social World: When, Where, and H...
184K€
Cerrado
MULTISENSE
Lifespan Development of Typical and Atypical Multisensory Pe...
1M€
Cerrado
PSI2010-15426
LA INTERACCION ENTRE INTEGRACION MULTISENSORIAL Y ATENCION
169K€
Cerrado
Información proyecto NeuCoDe
Duración del proyecto: 24 meses
Fecha Inicio: 2019-03-22
Fecha Fin: 2021-03-31
Líder del proyecto
UNIVERSITY OF LEEDS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
225K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Perceptual decisions rely on the integration of information from the environment, which typically involves the combination of stimuli from different senses. The quality of sensory evidence depends highly on our actions that affect how we acquire information from the external world. Importantly, the processing of this multisensory information requires the interaction of multiple neural processes over time. However, the neural mechanisms underlying this complex human behaviour remain elusive. In this project, I will employ a novel active sensing paradigm coupled with state-of-the-art neuroimaging and computational modelling to probe how the brain samples, processes and integrates multisensory information in order to make fast and accurate decisions. I will devise a reaction-time task where human subjects will actively sense and discriminate the amplitude of two texture stimuli a) using only visual information, b) using only haptic information and c) combining the two sensory cues, while electroencephalograms (EEG) will be recorded. To study this, I will develop a novel computational methodology for the joint analysis of brain activity (EEG), sensorimotor signals (movement kinematics) and behavioural measurements (choice and response time). First, behavioural modelling will provide a mechanistic account of the constituent processes underlying decision fomation. Then, model predictions will inform the joint analysis of neural and sensorimotor signals, to characterize the neural and behavioural basis of active multi-sensing and decision-making. To achieve this, I will devise an information-theoretic methodology that quantifies a) the contribution of each sensory modality to perception and b) the interaction of their neural representations to drive perceptual decisions. Ultimately, this project will elucidate the brain networks involved in active multisensory decision-making and characterize their respective functional roles in behavioural performance.