Networks of coupled photon Bose Einstein condensates when condensation becomes...
Networks of coupled photon Bose Einstein condensates when condensation becomes a computation
Despite large advances in both algorithms and computer technology, even typical instances of computationally hard problems are too difficult to be solved on today’s computers. Unconventional computational devices that break with t...
ver más
PID2019-109094GB-C22
COMPUTACION CUANTICA EN RESERVORIOS Y SISTEMAS DINAMICOS NO-...
46K€
Cerrado
Últimas noticias
30-11-2024:
Cataluña Gestión For...
Se ha cerrado la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
29-11-2024:
IDAE
En las últimas 48 horas el Organismo IDAE ha otorgado 4 concesiones
29-11-2024:
ECE
En las últimas 48 horas el Organismo ECE ha otorgado 2 concesiones
Descripción del proyecto
Despite large advances in both algorithms and computer technology, even typical instances of computationally hard problems are too difficult to be solved on today’s computers. Unconventional computational devices that break with the usual paradigms of digital electronic computers can help to overcome these limitations. In this project, a network of coupled photon Bose-Einstein condensates will be developed and used as experimental platform to perform ultrafast simulations of classical spin systems. Specifically, the network will be capable of solving the ground-state problem in spin glasses (disordered magnets). The latter constitutes a well-known combinatorial problem that can be mapped mathematically to many other computationally hard problems in machine learning, logistics, computer chip design and DNA sequencing. In a proof-of-principle experiment, I aim to demonstrate that the proposed spin glass simulator performs this computationally hard optimisation problem significantly faster than any other computer today. I have pioneered the Bose-Einstein condensation of photons in optical microcavities, which has enabled us to investigate this genuine quantum-mechanical effect with all-optical methods. In a recent work of my group, we experimentally demonstrate controllable phase relations between photon Bose-Einstein condensates in an optical microcavity. The investigated device realises an optical analogue of a Josephson junction. Similar to a transistor for electronics, a controllable photonic Josephson junction represents the key component for ultrafast optical spin glass simulation and, thus, is the crucial basis for the proposed project. The BEC-NETWORKS project will be the main research project of my research group at the University of Twente.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.