Network models for the computational design of proficient enzymes
Billions of years of evolution have made enzymes superb catalysts capable of accelerating reactions by several orders of magnitude. The underlying physical principles of their extraordinary catalytic power still remains highly deb...
Billions of years of evolution have made enzymes superb catalysts capable of accelerating reactions by several orders of magnitude. The underlying physical principles of their extraordinary catalytic power still remains highly debated, which makes the alteration of natural enzyme activities towards synthetically useful targets a tremendous challenge for modern chemical biology. The routine design of enzymes will, however, have large socio-economic benefits, as because of the enzymatic advantages the production costs of many drugs will be reduced and will allow industries to use environmentally friendly alternatives. The goal of this project is to make the routine design of proficient enzymes possible. Current computational and experimental approaches are able to confer natural enzymes new functionalities but are economically unviable and the catalytic efficiencies lag far behind their natural counterparts. The groundbreaking nature of NetMoDEzyme relies on the application of network models to reduce the complexity of the enzyme design paradigm and completely reformulate previous computational design approaches. The new protocol proposed accurately characterizes the enzyme conformational dynamics and customizes the included mutations by exploiting the correlated movement of the enzyme active site residues with distal regions. The guidelines for mutation are withdrawn from the costly directed evolution experimental technique, and the most proficient enzymes are easily identified via chemoinformatic models. The new strategy will be applied to develop proficient enzymes for the synthesis of enantiomerically pure β-blocker drugs for treating cardiovascular problems at a reduced cost. The experimental assays of our computational predictions will finally elucidate the potential of this genuinely new approach for mimicking Nature’s rules of evolution.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.