"The precise digital reconstruction of natural networks such as blood vessels or plant roots is crucial to ensure the quality of
simulation-driven predictions. However, these structures can often be accessed only via noninvasive t...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TIN2013-42795-P
HERRAMIENTAS OPERACIONALES Y METRICAS PARA EL TRATAMIENTO DE...
52K€
Cerrado
BES-2010-038911
ESTADISTICA DE IMAGENES NATURALES: APRENDIZAJE NO PARAMETRIC...
43K€
Cerrado
BES-2012-057113
RESTAURACION Y ANALISIS DE IMAGENES DIGITALES
43K€
Cerrado
RYC-2015-17437
Elastic Networks for Image Sequence Analysis
309K€
Cerrado
EEBB-I-12-03806
ESTADISTICA DE IMAGENES NATURALES: APRENDIZAJE NO PARAMETRIC...
2K€
Cerrado
TEC2009-13696
ESTADISTICA DE IMAGENES NATURALES: APRENDIZAJE NO PARAMETRIC...
37K€
Cerrado
Información proyecto NIOT
Duración del proyecto: 24 meses
Fecha Inicio: 2023-03-08
Fecha Fin: 2025-03-31
Líder del proyecto
HOGSKULEN PA VESTLANDET
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
211K€
Descripción del proyecto
"The precise digital reconstruction of natural networks such as blood vessels or plant roots is crucial to ensure the quality of
simulation-driven predictions. However, these structures can often be accessed only via noninvasive techniques, leading to artifacts
that compromise the reliability of the data and the derived simulations. No technological solution is currently able to recover digital
reconstructions of ""real"" networks from corrupted images.
The NIOT (Network Inpainting via Optimal Transport) project aims to fill this technological gap by defining for the first time a robust
mathematical formulation of the image network reconstruction problem. Thanks to the most recent advances of the optimal
transport theory, we will finally encode into equations the well-known fact that several natural networks are designed to transport
resources with the least effort possible. We will adopt a variational image processing method, where the reconstructed network is
obtained as the density minimizing the sum of the discrepancy with the observed data and a branch inducing functional. As such, our
proposed methodology builds a bridge between the image regularization and optimal transport communities.
A major ambition of the project is to pair the theoretical analysis with robust simulation tools that are capable of handling real data
arising from MRI acquisition techniques. This will require exploitation and development of dedicated components to handle large
datasets, both from a data handling and a multiscale simulation perspective. Our algorithm will be tested on a sequence of
increasingly channeling problems. We will start from simple synthetic networks, then we will use an high-quality map of the blood
vessel network of a mouse brain. The final benchmark will be to reconstruct of corrupted vascular networks in MRI scans of human
patients."