Network for novel remote sensing technologies in forest disturbance ecology
The proposed project enhances networking activities between research institution in Widening country (Institute of Forest Ecology, Slovak Academy of Sciences, IFE SAS) and top-class counterparts at the EU level (Finnish Geospatial...
The proposed project enhances networking activities between research institution in Widening country (Institute of Forest Ecology, Slovak Academy of Sciences, IFE SAS) and top-class counterparts at the EU level (Finnish Geospatial Research Institute, The University of Eastern Finland and Swedish University of Agricultural Sciences). The project builds on networking for excellence through knowledge transfer and exchange of best practices between involved institutions. The major result will be raising reputation, research profile and attractiveness of IFE SAS. Project implementation will enhance IFE SAS staff management capacities, administrative skills and scientific capabilities in the use of novel remote sensing technologies (RST) in forest disturbance ecology (FDE). The project proposes establishment of initial network and development of a new joint research project in novel RST applications in FDE. Rigorous analyses of severe insect-induced disturbances using novel RST will be carried out in test areas representing different forest and climate types: mountain forests in Slovakia and boreal forests in Finland and Sweden. We will integrate in situ UAV and drone acquired remotely sensed data, existing multitemporal geospatial information and field data, particularly data on bark beetle population density, visible infestation symptoms linked to outbreak phases, and tree physiology parameters measured using electronic dendrometers or sapflow meters. The combined dataset will be used to develop new tools for landscale-level early bark beetle attack identification and for designing bark beetle infestation risk assessment model. We will draw on the latest advances in drone technologies and image analytical tools, including deep Convolutional Neural Networks based machine learning techniques and Artificial Intelligence algorithms. We expect to obtain important scientific results and contribute new knowledge to this scientific field.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.