Nanoscopic and Hierachical Materials via Living Crystallization Driven Self Asse...
Nanoscopic and Hierachical Materials via Living Crystallization Driven Self Assembly
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2014-56345-P
PREPARACION DE MATERIALES NANOESTRUCTURADOS SENSIBLES A ESTI...
73K€
Cerrado
AP-GAC
SYNTHESIS AND SELF ASSEMBLY OF POLYPHOSPHAZENE PP BLOCK CO...
45K€
Cerrado
NANOITSELF
Advanced functional nanocomposites by cooperative self assem...
61K€
Cerrado
supraNANOASSEMBLY
Complex Supramolecular Architectures via the Micellization o...
273K€
Cerrado
CTQ2010-18330
SINTESIS Y SELF-ASSEMBLY DE COPOLIFOSFACENOS DE BLOQUES. DIS...
11K€
Cerrado
Información proyecto 2DHIBSA
Duración del proyecto: 60 meses
Fecha Inicio: 2018-04-24
Fecha Fin: 2023-04-30
Líder del proyecto
UNIVERSITY OF BRISTOL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based bottom-up assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.