Nanoscintillators to potentiate brain cancer radiotherapy: from physics to prec...
Nanoscintillators to potentiate brain cancer radiotherapy: from physics to preclinical trials
More than 50% of cancer patients undergo radiation therapy (RT) in the course of their treatment. However, because of a lack of specificity for tumor tissues, delivering therapeutically effective doses of X rays with tolerable tox...
More than 50% of cancer patients undergo radiation therapy (RT) in the course of their treatment. However, because of a lack of specificity for tumor tissues, delivering therapeutically effective doses of X rays with tolerable toxicity on healthy tissues remains a challenge. Glioblastoma multiforme (GBM), the most common primary brain cancer in adults has a dismal prognosis despite an aggressive standard-of-care. Developing new strategies to improve the therapeutic index of RT is therefore of major importance. The aim of this project is to comprehensively study the multifaceted radiotherapeutic effect of nanoscintillators (NS), and determine how to harness these effects to improve the therapeutic index of RT. By converting high-energy photons such as X-rays into UV/visible photons, NS can augment RT by various effects. These include radiation dose enhancement, radioluminescence-induced photodynamic therapy and DNA damage generated by UV-radioluminescence. This project has three main objectives: 1) To elucidate the physical and photochemical origins of the radiotherapeutic effects of NS using spectroscopic studies to identify the reactive oxygen species and DNA lesions generated upon X-rays; 2) To study the biological impact of the NS on 3D models and in syngeneic rat models of GBM; 3) To develop an in silico program that simulates the efficacy of prospective NS, and studies the impact of their composition, size and morphology. This will tailor future NS to specific malignancies with distinct biological properties. With this innovative methodology and an interdisciplinary approach that ranges from physics to biology, this project will provide ground-breaking fundamental knowledge on the radiotherapeutic effects of NS that may lead to highly valuable and clinically translatable therapies. In the long-term, this strategy may be tailored for pancreatic and metastatic ovarian cancers, for which the multifaceted enhancement of RT efficacy by NS may be of great interest.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.