Nanoscale enhanced Spectroscopies in Electrochemically Gated Single Molecule Dev...
Nanoscale enhanced Spectroscopies in Electrochemically Gated Single Molecule Devices
To push forward Molecular Electronics, a complete understanding of the nanoscale molecule/electrode interface is a must, since the interactions, structure and electronic characteristics of such interfaces define their physicochemi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Single-Molec-Switch
Developing single molecule switches for applications in nano...
166K€
Cerrado
NANOCON
Nanocontacted Thin Molecular Films for Spintronics
166K€
Cerrado
QDCN
Quantum Devices based on Carbon Nanotubes
160K€
Cerrado
FIS2012-34858
DISEÑO Y MODELIZACION DE NUEVOS DISPOSITIVOS NANOELECTRONICO...
64K€
Cerrado
SIMONE
Single Molecule Nano Electronics SIMONE
2M€
Cerrado
AtomicScaleCircuit
The next step in molecular electronics Creation and investi...
92K€
Cerrado
Información proyecto TECh-MoDE
Duración del proyecto: 29 meses
Fecha Inicio: 2019-04-23
Fecha Fin: 2021-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
To push forward Molecular Electronics, a complete understanding of the nanoscale molecule/electrode interface is a must, since the interactions, structure and electronic characteristics of such interfaces define their physicochemical properties, thus their functionalities. This knowhow will enable exploiting these interfaces as the building blocks for the next generation of high performance and sustainable electronic devices. With the aim to decipher the abovementioned big unknowns, TECh-MoDE will develop the first hybrid platform with spectro-electrochemical detection capabilities of individual molecules under ambient conditions: the EC-TERS/Blinking, which will be based in the communion of two platforms: first, the Scanning Tunneling Microscope Break-Junction will allow to capture the tunnelling current through an individual bridged molecule between two electrodes of Tunneling nanoscale gap, enabling the electrical signatures of a single-molecule electrical contact. Second, the TERS, a high ultrasensitive non-destructive spectroscopic method, will provide spectroscopic features of the trapped molecule under strict electrochemical control. The single-molecule nature of this new platform provides a detailed insight into the molecular junction structure by simultaneously capturing current flow and vibrational spectra during the spontaneous formation of a molecular junction. This state-of-the-art dual-platform will allow to study, for the first time, the evolution of spectro-electrochemical characteristics in a molecular junction. This novel platform will be then exploited to explore several key structural aspects that remain unknown during the formation of single-molecule electrical contacts: (1) the observed multiple contact configurations in most common covalent anchoring chemistry, (2) the structural richness in supramolecular junctions and (3) the electrochemical gating effects of single-molecule wires of redox (bio)molecules.