Myocardial infarction continues to claim the lives of millions of people every year, and survivors are often left with severe health issues. Transplanting cardiac cells engineered from human stem cells into the injured heart is a...
ver más
31/10/2029
Líder desconocido
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
Líder desconocido
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2024-09-09
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto uStemGel
Duración del proyecto: 61 meses
Fecha Inicio: 2024-09-09
Fecha Fin: 2029-10-31
Líder del proyecto
Líder desconocido
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Myocardial infarction continues to claim the lives of millions of people every year, and survivors are often left with severe health issues. Transplanting cardiac cells engineered from human stem cells into the injured heart is a particularly promising approach to repairing damaged cardiac tissue. Despite extensive research on stem cell-based therapies, a major limitation is effectively regulating stem cell differentiation. Mechanically training stem cells throughout culture could be solution, by exploiting their mechanosensitive nature. However, there is currently a lack of technology that can recreate the mechanically dynamic microenvironment of tissue. Therefore, I aim to develop an innovative cell culture technology, based on designer microgels and nanorobotics, which will allow control over stem cell
differentiation. To achieve this goal, I will package pluripotent stem cells in smart microgels using microfluidics. By rigorously adjusting material properties, I will ensure culture conditions that simulate the native tissue microenvironment. The smart microgels will have tunable stiffness, which I will use to improve cardiogenic differentiation in pluripotent stem cells. I will integrate wirelessly controlled nanoactuators to mechanically train stem cells to decipher the relationship between forces and stem cell differentiation. Together with my team, I will develop rapid culture and stimulation methods based on microfluidics to identify the best conditions for stem cell preparation. This multifunctional technology will contribute to achieving efficient cardiac regeneration, and has great potential to make a big impact in regenerative medicine.